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Abstract
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1 Introduction

The increasing digitization of people’s lives has left behind a trace of valuable data such as app

usage and social media activity. The data helps paint various digital profiles and has been in-

creasingly used by FinTech companies to screen and score borrowers in the credit market. As

important players in this market, a distinct feature of FinTech lenders is the substitution of al-

gorithms and alternative data for in-person interactions between the lender and the borrower

(Di Maggio, Ratnadiwakara, and Carmichael, 2022).

Once digital profile information is widely used for lending decisions, it is natural that bor-

rowers may change their behavior, thereby affecting the data collected by the FinTech lenders, as

would be implied by the Lucas critique (Lucas, 1976). While some of the digital-profile variables

are hard to manipulate or require a borrower to change her intrinsic habits (e.g., transaction

records for utility bills), some can be manipulated more easily. For instance, a consumer may

switch to an iOS device when applying for loans through an online lending platform, under-

standing that iOS users imply higher income and lower default rates than Android users (Berg,

Burg, Gombović, and Puri, 2020).

The increasing prominence of algorithms and alternative data in the credit market elevates

the importance of understanding their adoption, borrowers’ responses, and implications for the

aggregate economy. In this paper, we build a theoretical model to study how lenders’ use of data

technology affects borrowers’ manipulation behavior and how borrowers’ manipulation in turn

affects lenders’ data usage and lending decisions.

Our model features a single lender and a continuum of borrowers. Each borrower has a project

for which they seek funding from the lender. There are two types of borrowers, high and low,

based on the probability their project will succed. The type is the private knowledge of the bor-

rower. The low-type borrower’s project has negative NPV, and the high-type borrower’s project

has positive NPV. Thus, the lender wishes to weed out low-type borrowers.

Each borrower has a digital profile connected to her underlying type. The lender chooses

how much data to collect about the borrower’s digital profile. The collected data generate a noisy
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signal about borrower creditworthiness, and the lender can base its credit decisions on this signal.

Importantly, the borrower can manipulate their digital profile at some cost, in order to fool the

lender about their type.

The key insight is that the low-type borrower’s incentive to manipulate their information

increases rather than decreases in the extent of data collected by the lender. The better data that

the lender has, the more likely that those who generate high signals are indeed high types. As a

result, the interest rate offered to borrowers who generate high signals is lower. This feature, in

turn, implies that low types have a greater incentive to manipulate their data.

As a result of this increased manipulation, an increase in the data coverage in the lender’s

underwriting model can give rise to a non-monotonic effect on its expected lending profit. On

the one hand, a higher data coverage improves the quality of the lender’s data, better informing

its lending decisions. On the other hand, a higher data coverage can induce low-type borrowers to

manipulate their digital profiles. Understanding that the lender would rely more on the collected

data, the low-type borrowers have greater incentives to disguise themselves as high types, which

lowers the quality of the lender’s data and impairs its lending decisions.

When the manipulation cost is low for borrowers, the latter negative force becomes salient.

Our main result is that, in equilibrium, the lender optimally chooses to limit its own data coverage—

even if it is costless to acquire more data for its underwriting models, the lender would not do so.

In this way, the lender limits the borrowers’ manipulation, sustaining its data quality and lending

profit.

Our results imply there is an endogenous limit on the value of big data to a lender. Acquiring

additional data beyond this optimal limit results in the data itself being less useful for predicting

default. In turn, there is an endogenous limit on how much information the lender will acquire.

If information acquisition were costless, in the spirit of Holmström informativeness (Holmström,

1979), the lender should acquire unlimited amounts of information on the borrower, and then

use it in making a prediction of borrower creditworthiness. In our model, the lender has no

exogenous cost to acquiring information. Rather, borrower manipulation renders the information
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less valuable, generating an endogenous cost to acquiring more of it.

Our paper builds on the literature on manipulation in contracting settings, in which the agent

can manipulate the observed performance measure. In such a setting, the multi-tasking model

of Holmström and Milgrom (1991) implies that when manipulation of a particular variable is

easy, the contract should not depend on that variable. In a moral hazard setting, Goldman and

Slezak (2006) show that manipulation is more likely when managers have high-powered incen-

tives. Lacker and Weinberg (1989) consider a situation with hidden information, and show the

optimal contract may involve the agent falsifying the reported state. When both adverse selec-

tion and moral hazard are present, Beyer et al. (2014) find that in the presence of manipulation,

the optimal contract is less steep than otherwise.

Recent work on agent manipulation in contractual settings includes Barbalau and Zeni (2022)

in the context of green bonds. Cohn et al. (2022) examine an issuer manipulating information

provided to a credit rating agency, and tie the incentives to manipulate to the quality of the rating

process. With respect to mortgage loans, Rajan, Seru, and Vig (2015) show that the interest rate on

a loan becomes a worse predictor of default as securitization increases during the subprime crisis.

Our manipulation mechanism provides one potential explanation for this documented failure of

default models.

Our paper is also related to the growing literature on FinTech lending and the use of big data

in the lending business. Berg et al. (2021) offer an excellent survey on this literature. Berg et al.

(2020) show digital footprint variables (e.g., computer type, distribution channel) to be important

predictors of default and usefully complement credit bureau information. Di Maggio and Yao

(2021) note FinTech lenders’ reliance on information provided in credit reports to automate their

lending decisions fully. Di Maggio et al. (2022) find that alternative data used by a major FinTech

platform exhibits substantially more predictive power with respect to the likelihood of default

than traditional credit scores and helps broaden credit access. Jansen et al. (2022) analyze the

welfare effects of increased data availability in the credit market. We contribute to this literature

by focusing on borrowers’ manipulation behavior and exploring its implications for the lender’s
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lending decisions and the credit market.

2 The Model

We consider a credit market with a lender and a continuum [0, 1] of borrowers. Each borrower

seeks unit funding for a project. If the project succeeds, it generates cash flow R; if it fails, the

cash flow is zero. The risk-free rate is zero, and all agents are risk-neutral.

2.1 Borrowers

There are two types of borrowers, high-type (H) and low-type (L). Let ti ∈ {H,L} denote

borrower i’s type. A fraction α ∈ (0, 1) of the borrowers are high-type borrowers, and the

success rate of their project is qH ∈ (0, 1). The remaining fraction 1 − α of borrowers are low-

type, and their project success rate is qL ∈ (0, 1). We assume that qHR > 1 > qLR. That is, the

high type has a positive net present value (NPV) project, and the low type has a negative NPV

one. Denote the average project success rate as q̄ ≡ αqH + (1 − α)qL. We assume that q̄R > 1

so that without additional information, an average project has positive NPV and is thus worth

funding. Each borrower knows their own type, and the fraction α is common knowledge. If the

borrower i accepts a loan from the lender and undertakes the project, she repays the loan plus

the interest rate when the project succeeds. Otherwise, if the project fails, the borrower defaults.

To ensure that the borrowers retain some surplus from a successful project when dealing with

the monopolistic lender, we assume that borrower i has an outside loan offer at an interest rate

vi. The outside offer is independent across borrowers and has an atomless distribution F (·) with

density f(·). The support of the outside offer vi is [0, R − 1], with the upper bound being the

maximum net payoff from the project investment. We assume that the hazard rate is increasing,

that is, f(vi)
1−F (vi)

is increasing in vi. The outside option serves as the borrower’s reservation interest

rate, and its realization is privately known to borrower i. One can think of vi as a reduced-form

way to model an alternative loan offered by another lender.
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In addition to her project type, a borrower has a digital profile denoted by θi ∈ {H,L}. As

shown by Berg et al. (2020), digital profiles of customers include variables such as the device

type (e.g., desktop, tablet, mobile), operating system (e.g., Windows, iOS, Android), the channel

through which a customer has visited the website and the time at which a customer makes the

purchase. For small and medium-sized businesses (SMBs), digital profiles can include their busi-

ness ratings and reviews on social media and other sites like Yelp, website data such as traffic and

global traffic rank, social media presence, and engagement data.

A key feature of our model is that borrowers can manipulate their digital profile. Denote

borrower i’s manipulation decision as mi ∈ [0, 1], where mi = 0 indicates no manipulation and

mi = 1 means complete manipulation. Manipulation increases the probability that the digital

profile is dissociated from the type. Specifically, a borrower’s manipulation decision affects her

digital profile as follows:

θi =


t−i, with probability mi,

ti, with probability 1−mi,

(1)

where −i ̸= i. To manipulate, a borrower incurs a cost C(mi), where C(0) = C ′(0) = 0 and

C ′(mi), C
′′(mi) > 0 when mi > 0.

2.2 The Lender

The lender can leverage the power of alternative data in its lending business. Specifically, the

lender chooses a data technology ρ ∈ [0, 1] in its underwriting model. The technology and the

collected data yield a signal si about the borrower i’s digital profile, where

si =

 θi, with probability ρ,

∅, with probability 1− ρ.
(2)

The empty set ∅ denotes that the lender does not receive any information about the borrower.1

One can interpret ρ as the data coverage in the lender’s underwriting algorithm. The higher the
1Our key insights remain valid if we consider an alternative data structure in which the signal si correctly reveals

the underlying borrower type with probability ρ; that is, Pr(si = H|θi = H) = Pr(si = L|θi = L) = ρ, where
ρ ∈ [ 12 , 1].

5



data coverage, the more likely the lender’s signal is informative.

Different alternative data read together can be effective in evaluating financial credibility. For

instance, paying rent and utility bills on time demonstrates responsible behavior, and good aca-

demic background may show employment potential. A steady job for a reasonable length of time

indicates reliability and a regular source of income. Asset ownership, such as purchasing a retail

item on installments and making timely payments, proves respect for financial commitments.

While none of them may make a strong case individually, aggregation of such innocuous details

can present a responsible individual who might otherwise be dismissed as risky and unqualified

(see, for example, Kona (2020)).

To convey our insight most transparently, we assume that increasing the extent of data cov-

erage, ρ, has no cost for the lender. Note also that because the signal obtained by the lender is

informative only about the borrower’s digital profile, the signal depends on the extent of manip-

ulation by the borrower.

Personalized loan pricing adopted by the lender is facilitated by its data collection. We assume

that standard information about the borrower (i.e., information such as income, wealth, and credit

score) is already incorporated into the prior α, and focus on the collection of alternative data, i.e.,

digital signals. Specifically, the lender observes a digital signal si ∈ {H,L,∅} from borrower i

and decides whether to offer the borrower a loan and if so, at what interest rate. The interest rate

is denoted as ri. Thus, when the project succeeds, the lender obtains a net payoff ri, whereas the

lender’s payoff is −1 when the project fails. Note that given the borrower’s reservation interest

rate, no borrower will accept a loan offer at an interest rate strictly higher than R − 1. Thus,

when the lender does not want to make a loan, it can simply offer such an interest rate. Without

loss of generality, we set the interest rate offer to R in this case. We assume the lender has deep

pockets and can raise an arbitrary amount of funds at an interest rate normalized to zero.
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2.3 Sequence of Moves

The sequence of moves in the economy is illustrated in Figure 1. At date 0, the lender chooses its

data coverage ρ to maximize the expected profit from lending. After observing the data coverage,

each borrower decides their manipulation intensity mi. At date 1, each borrower observes their

outside loan offer vi.2 Then, the lender receives signals from the borrowers and offers a personal-

ized loan contract at the interest rate ri. Based on the contract offer ri and the outside option vi,

each borrower decides whether or not to accept the lender’s offer. Finally, at date 2, the project’s

outcome is revealed, and all agents’ payoffs are realized.

Time 0

• The lender chooses data cov-
erage ρ;
• After observing the data cov-
erage, each borrower i learns
about their type ti ∈ {H,L}.
• Each borrower chooses a
manipulation probability mi.

Time 1

• Each borrower learns about
their reservation rate vi.
• After receiving a signal si, the
lender makes the loan offer to
the borrower;
• After receiving the loan offer,
the borrower decides whether or
not to accept the offer.

Time 2

The uncertainty re-
garding the project
outcome is resolved
and all agents’ payoffs
are realized.

Figure 1: Timeline

2.4 Equilibrium Definition

We consider the perfect Bayesian equilibria of the model.

Definition 1 (Equilibrium definition). Aperfect Bayesian equilibrium is characterized by the lender’s

data coverage ρ ∈ [0, 1], the lender’s loan offers ri, and each borrower’s manipulation decision

mi ∈ [0, 1] and loan acceptance decisions such that:

(i) At date 0, the lender chooses data coverage ρ to maximize its expected profit.

2An alternative timing would be that each borrower makes manipulation decisions after observing their outside
loan offer vi. We consider this possibility in Section 4 and demonstrate the robustness of our key insight.
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(ii) At date 0, upon observing the lender’s data coverage ρ, borrower i chooses the manipulation

intensitymi that maximizes her expected payoff.

(iii) At date 1, upon observing the digital signal si ∈ {H,L,∅} about borrower i, the lender chooses

interest rate ri to maximize its expected profit, given its posterior belief over types. The posterior

belief, in turn, is given by Bayes rule wherever possible.

(iv) At date 1, given the loan offer ri and data coverage ρ, her type ti, and the reservation interest

rate vi, the borrower i’s acceptance decision maximizes her expected payoff.

3 Data Coverage and Data Manipulation

We first consider a benchmark where borrowers cannot manipulate their digital profiles. We then

characterize the equilibrium outcome.

3.1 A No-Manipulation Benchmark

Consider first a benchmark economy in which the borrowers cannot manipulate their digital

profiles, that is, mi = 0 for all i ∈ [0, 1]. Then, based on equation (1), a borrower’s digital

profile is always consistent with her underlying type: θi = ti for any i ∈ [0, 1]. Therefore, if

the lender’s signal reveals any information, the borrower’s type is revealed. As expanding digital

data coverage is costless, it is immediate that the lender prefers maximal data coverage.

Lemma1 (No-manipulation benchmark). When borrowers cannotmanipulate their digital profiles,

the lender optimally sets data coverage to be one, i.e., ρ∗ = 1.

Lemma 1 shows that when borrowers’ digital profiles are not subject to manipulation, the

lender will choose maximal data coverage. That is, the lender will fully use all available digital

data in its underwriting models. This result is very intuitive since, in this circumstance, acquiring

more data unambiguously results in a better screening of borrowers, and thus only has a benefit.
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This finding stands in stark contrast to what we will show in the next section in which borrowers

can manipulate their digital profiles.

3.2 Data Collection and Manipulation

We now consider the case in which borrowers can manipulate their digital profiles to influence

the lender’s underwriting process. We begin with the borrower’s acceptance/rejection decision

of a loan offer.

3.2.1 Optimal Loan Acceptance Decisions by Borrowers

Suppose that borrower i accepts a loan at interest rate r and undertakes the project. If the project

succeeds, the borrower repays the loan plus the interest rate, obtaining R − (1 + r). Otherwise,

if the project fails, the borrower defaults and receives 0. As such, for t ∈ {H,L}, the borrower’s

expected payoff is

w(t, r) = qt [R− (1 + r)] . (3)

The borrower has an outside offer at interest rate vi, which serves as her reservation interest

rate. If the borrower accepts the outside offer, her expected payoff is w(t, vi) = qt [R− (1 + vi)].

Thus, the borrower accepts the loan if and only if

r ≤ min{vi, R− 1} = vi, (4)

where the equality follows because the support of the random variable vi is [0, R − 1]. Thus, at

time 0, the borrower believes that the probability they will accept a loan at rate r is 1− F (r).

3.2.2 Optimal Interest Rates and Manipulation Intensity

Borrowers’ manipulation behavior mi affects the lender’s optimal choice of interest rate. Specif-

ically, after observing signal si ∈ {H,L,∅}, which the borrowers’ manipulation might contami-

nate, the lender updates its posterior beliefs about the borrower type and determines the optimal

interest rate for its loan offer. Let µs denote the lender’s posterior belief that the borrower is of
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the high type after observing signal s; that is, µs ≡ Pr(ti = H|s). Based on borrowers’ optimal

loan acceptance strategy (4), the lender understands that if it makes a loan offer at interest rate

r, borrower i accepts the offer with probability 1−F (r). Conditional on the borrower accepting

the offer, the lender obtains a net payoff r if the project succeeds, and its payoff becomes −1 if it

fails. Therefore, given the loan offer at interest rate r, the lender’s expected payoff is

πsi(r) = (1− F (r))
[
q̄s · r − (1− q̄s)

]
, (5)

where q̄s ≡ µsqH + (1 − µs)qL indicates the average success rate of the project after receiving

the signal s. Maximizing the expected payoff (5) thus yields the lender’s optimal interest rate rs,

for s ∈ {H,L,∅}.

In the meantime, borrowers’ equilibrium manipulation intensitymi is affected by the lender’s

choice of interest rate. Given the lender’s interest rate for borrowers with high digital profile rH

and that for those with low digital profile rL, all borrowers of a given type face the same trade-off

when deciding whether to manipulate. Thus, they must adopt the same manipulation intensity;

that is, mi = mt for t ∈ {H,L}.

If a borrower of type t ∈ {H,L} with reservation rate vi manipulates with probability mi,

their expected payoff at date 0 is

u(t,mi) = −C(mi) + ρ ·mi ·
(
w(t, rt̃)(1− F (rt̃)) +

∫ rt̃

0

w(t, vi)dF (vi)

)
︸ ︷︷ ︸

expected payoff when incorrectly recognized

+ ρ · (1−mi) ·
(
w(t, rt)(1− F (rt)) +

∫ rt

0

w(t, vi)dF (vi)

)
︸ ︷︷ ︸

expected payoff when correctly recognized

(6)

+ (1− ρ) ·
(
w(t, r∅)(1− F (r∅)) +

∫ r∅

0

w(t, vi)dF (vi)

)
︸ ︷︷ ︸

expected payoff when unrecognized

.

There are three cases to consider in equation (6). First, given the lender’s data technology

ρ, with probability ρ · mi the borrower will successfully pretend to be a different type t̃ and

receive the according interest rate rt̃. As discussed in Section 3.2.1, if the realized reservation

interest rate vi exceeds rt̃, the borrower accepts the offer, obtaining an expected payoff w(t, rt̃).
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Otherwise, the borrower goes for the outside option with reservation interest rate vi, and her

expected payoff is w(t, vi). Therefore, when the borrower manipulates successfully, her expected

payoff is w(t, rt̃)(1− F (rt̃)) +
∫ rt̃
0
w(t, vi)dF (vi).

Second, with probability ρ ·(1−mi), the borrower will remain in the original profile t. Similar

to the first case, she either accepts the loan offer rt or goes for the outside option, leading to an

expected payoff ofw(t, rt̃)(1−F (rt))+
∫ rt
0
w(t, vi)dF (vi). Finally, with the remaining probability

1−ρ, the borrower will not be recognized as any type since the lender’s signal is not informative.

Again, the borrower needs to make a choice between the loan offered by the lender featured with

interest rate r∅ and the outside offer with reservation interest rate vi. The resulting expected

payoff for the borrower is w(t, r∅)(1− F (r∅)) +
∫ r∅
0
w(t, vi)dF (vi).

To proceed, we conjecture and verify later that only low-type borrowers manipulate their

digital profiles in equilibrium, namely, mL > 0 whereas mH = 0. We thus only focus on the ma-

nipulation incentive of the low-type borrowers hereafter and characterize the equilibrium interest

rates and manipulation intensity. Denote the manipulation intensity of the low-type borrowers

as m, i.e., mL = m. Given the low-type borrowers’ manipulation intensity m, upon receiving a

signal si = H , the lender’s posterior belief about the borrower being the high-type is:

µH =
α

α + (1− α)m
. (7)

Then, the lender chooses interest rate r to maximize the expected profit as given by (5), where

q̄H = µHqH + (1− µH)qL, which yields the optimal interest rate rH as determined implicitly in

the following equation:

f(rH)

1− F (rH)
=

q̄H
q̄H(1 + rH)− 1

. (8)

The second-order condition for the maximization is −f ′(rH)(q̄H(1 + rH)− 1)− 2f(rH)q̄H < 0.

When observing signal si = L, since in equilibrium, high-type borrowers never manipulate

their data, the lender knows that the borrower must be low-type and the project is not worth

funding. So the lender does not make a loan offer, and as discussed in Section 2, we simply let

the optimal interest rate rL = R in this case. The resulting payoff for the lender is πL = 0. Note
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that we have characterized rH ≤ rL, which is consistent with the conjecture that only low-type

borrowers manipulate their digital profiles in equilibrium.

When the signal does not contain any information, i.e., si = ∅, the lender’s posterior about

the probability of the borrower being high type does not change, i.e., µ∅ = α. Inserting µ∅ = α

into equation (5) and maximizing yields the optimal interest rate r∅ as determined implicitly in

the following equation:

f(r∅)

1− F (r∅)
=

q̄

q̄(1 + r∅)− 1
. (9)

The second-order condition for the maximization is −f ′(r∅)(q̄(1 + r∅)− 1)− 2f(r∅)q̄ < 0. Part

(1) of Proposition 1 summarizes the optimal interest rates set by the lender.

Proposition 1. Suppose that the lender chooses data coverage ρ.

(1) When receiving signal si = H , the lender offers the loan with interest rate r∗H , where r
∗
H is

determined by equation (7); when receiving signal si = L, the lender offers the loan with interest

rate r∗L = R; and when receiving uninformative signal, i.e., si = ∅, the lender offers the loan

with interest rate r∗∅, where r
∗
∅ is determined by equation (9).

(2) The high-type borrowers never manipulate their digital profiles in equilibrium. The low-type

borrowers manipulate with positive probability if and only if ρ > 0. In this case, the equilibrium

manipulation intensitym∗ is determined by equation (10).

The following corollary summarizes how the manipulation intensity by low-type borrowers

affects the lender’s loan decisions.

Corollary 1 (Manipulation and optimal interest rates). When the low-type borrowers’ manipula-

tion intensity increases,

(1) the interest rate charged for the borrower with high-type digital profile increases, i.e., ∂rH
∂m

> 0;

(2) the interest rate charged for the borrower that is unrecognized and that for the borrower with a

low-type digital profile does not change, i.e., ∂r∅
∂m

= 0 and ∂rL
∂m

= 0.
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Part (1) of Corollary 1 states that when the low-type borrowers are more likely to manipulate

their digital profiles, the lender will set higher interest rates upon receiving the high-type signal.

As shown in equation (7), a higher manipulation intensity by the low-type borrowers lowers

the posterior belief that the borrower is truly high-type, hence the average success rate of the

borrower’s project (i.e., ∂µH

∂m
< 0 and ∂q̄H

∂m
< 0). As a result, the lender raises the interest rate

when offering the loan as compensation for the lower likelihood of retrieving the initial funding.

By contrast, as long as the signal does not reveal anything about the borrower type, the lender

always charges the interest rate r∅ as given by (9), regardless of the borrowers’ manipulation

intensity m. This result is intuitive because m does not affect the lender’s posterior belief when

the signal is uninformative. Likewise, the lender knows that the borrower is a low type with

certainty upon signal si = L, and again, the resulting interest rate rL is not affected by m.

Finally, we characterize the optimal manipulation decision by the low-type borrowers. Given

all other low-type borrowers’ manipulation decision m, a low-type borrower i’s expected payoff

u(L,mi) is given by equation (6). Taking the partial derivative of u(L,mi) with respect to mi,

setting it equal to zero, and replacing mi = m yields the following equation that determines the

equilibrium manipulation intensity m∗ by the low-type borrowers:

ρqL

∫ R−1

rH(m)

(vi − rH(m))dF (vi) = C ′(m). (10)

If the net benefit of manipulation atm = 1 is still positive, the equilibrium manipulation intensity

is m∗ = 1. In equation (10), we write the interest rate charged for the borrowers with high-type

digital profiles as rH(m) to emphasize that the interest rate is a function of the manipulation in-

tensitym. Thus, equation (10) clearly shows that the low-type borrowers’ manipulation intensity

is affected by the data coverage. The following corollary formally presents the result.

Corollary 2. The higher the data coverage chosen by the lender, the more intensively the low-type

borrowers manipulate their digital profiles. That is, ∂m
∂ρ

≥ 0.

As suggested by the signal structure (2), when the lender adopts higher data coverage in its

underwriting process (i.e., ρ increases), a borrower’s digital profile is more likely to be revealed
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and in turn influences the lender’s lending decision. Understanding this, a low-type borrower

will have greater incentives to manipulate her data, pretending to be a high-type borrower. The

resulting positive relationship between the lender’s choice of data coverage and the low-type

borrowers’ manipulation intensity, as summarized in Lemma 2, underlies the key mechanism in

our paper, driving the main insight as will be provided in Section 3.2.3.

3.2.3 Optimal Data Coverage by the Lender

Finally, at the beginning of date 0, the lender chooses data coverage to maximize its unconditional

expected profit in the lending business. Specifically, given the low-type borrowers’ manipulation

intensity m, a fraction α+ (1− α)m of borrowers own the high-type digital profile. With prob-

ability ρ, these borrowers will be recognized as high type by the lender’s data technology and

offered the interest rate rH , where rH is given by equation (8). The lender in turn makes an ex-

pected profit of πH(rH), where πH(·) is given by (5). Next, a fraction (1−α)(1−m) of borrowers

remain with the low-type digital profile and are recognized as the low type by the lender with

probability ρ. In this case, the lender effectively declines to lend to the borrowers by charging

prohibitively high interest rates, thereby making zero expected profit, i.e., πL(rL) = 0. Finally,

with probability 1 − ρ, the lender’s data technology does not work, and the borrower will be

unrecognized regardless of her underlying type. In this case, the lender sets interest rate r∅ and

makes profit π∅(r∅) accordingly, where r∅ is implicitly determined by (9), and π∅(·) is given by

equation (5). Overall, the lender’s unconditional expected profit at the beginning of the economy

is as follows:

Π(ρ) = ρ · (α + (1− α)m) · πH(rH) + (1− ρ) · π∅(r∅). (11)

Note that the unconditional expected profit Π is a function of the data coverage ρ because the

low-type borrowers’ manipulation intensity m and the lender’s optimal interest rate rH are both

functions of ρ, as implied by equations (8) and (10).

We are particularly interested in understanding what circumstance the lender’s optimal choice

of data coverage is strictly below 1, that is, ρ∗ < 1. The following proposition summarizes the
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finding.

Proposition 2 (Optimal data coverage). Define ρ̂ ≡ C(1)

qL
∫R−1
rH (1)(v−rH(1))dF (v)

, where rH(·) is implicitly

determined by equation (8). Suppose that ρ̂ < 1, or alternatively,C(1) < qL
∫ R−1

rH(1)
(v−rH(1))dF (v).

Then, in equilibrium, the lender chooses non-full data coverage, i.e., ρ∗ < 1.

Proposition 2 shows that despite the free data technology, in equilibrium, the lender may opti-

mally select the one that features non-full data coverage. This result stands in stark contrast with

the full data coverage in the no-manipulation benchmark economy as characterized by Lemma

1. On the one hand, when the lender adopts more advanced data technology in the underwriting

process, its signal is more likely to be informative, leading to better lending decisions. On the

other hand, as shown in Lemma 2, more advanced data technology can induce more intensive

manipulation by the borrowers, which lowers the quality of the lender’s signal. When the ma-

nipulation cost is low (e.g., C(1) < qL
∫ R−1

rH(1)
(v− rH(1))dF (v)) so that the digital profile is easily

manipulated, the lender’s signal quality deteriorates severely for a large and increasing ρ. In this

case, the latter effect dominates, leading the lender to avoid the full data coverage to retain the

data quality.

3.2.4 A Numerical Example

In this section, we examine a numerical example to illustrate the key insights of our paper. Con-

sider that the reservation interest rate follows a uniform distribution; that is, vi ∼ U(0, R − 1).

The manipulation cost is assumed to be C(mi) = c · m2
i . The parameters are qH = 0.8, qL =

0.2, α = 0.6, R = 2, and c = 0.0005. We plot the low-type borrowers’ equilibrium manipulation

intensity and the lender’s unconditional expected profit against its data coverage in Figure 2.

Consistent with Corollary 2, Panel (a) of Figure 2 demonstrates that more data coverage ρ

can induce (weakly) more manipulation from low-type borrowers. Specifically, when ρ < 0.87,

the equilibrium manipulation intensity m∗ strictly increases in ρ. After ρ continues to grow

and exceeds 0.87, the low-type borrowers fully manipulate their data, i.e., m∗ = 1. Due to this

more intensive manipulation, the lender’s unconditional expected profit can decrease in the data
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(a) Manipulation intensity (b) Lender profit (c) Borrower surplus

Figure 2: The effect of data coverage

coverage when ρ takes a large value, as shown in Panel (b) of this figure. Therefore, the lender

may not choose the maximum data coverage even though it is free. In this numerical example,

the lender optimally chooses ρ∗ = 0.21 to maximize its lending profit, which strictly falls below

1. This is consistent with Proposition 2.

In addition, we also examine the effect of data coverage on the borrower surplus, which is

defined to be the ex ante expected payoff of a borrower:

u = α · u(H, 0) + (1− α) · u(L,m), (12)

where u(t,mi) is given by equation (6). Panel (c) of Figure 2 shows that, like the lender profit,

borrower surplus also exhibits a hump-shape pattern with respect to the data coverage. Several

forces drive such a non-monotone pattern. For a low-type borrower, higher data coverage incen-

tivizes her to engage in more manipulation, which incurs higher costs. For a high-type borrower,

higher data coverage implies that she is more likely to be identified by the lender and receives a

favorable interest rate. However, more manipulation by the low-type borrowers contaminates the

lender’s signal, making it more difficult for the high-type borrower to separate from the low-type

one and thus leading to the unfavorable interest rates for the high-type borrower.
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4 Variation: If Borrowers Learn the Outside Option First

In the main model, we assume that the borrowers make manipulation decisions before learning

about their reservation interest rate vi, which suggests that the borrowers receive their loan offer

from the lender and the outside unmodeled lender simultaneously. An alternative timeline would

be that the borrowers learn about their outside interest rate vi first, engage in manipulation and

then seek a loan offer from the lender.

Denote the equilibrium interest rate set by the lender upon signals si = H , si = ∅, and si = L

as r∗H , r∗∅, and r∗L respectively. As in the main model, we conjecture and verify that in equilibrium

r∗H < r∗∅ < r∗L and thus only the low-type borrowers have incentives to manipulate. Therefore,

upon signal si = L, the lender knows that the borrower type with certainty and refuses to lend

to her, under which case we simply set r∗L = R as in the main model. Moreover, since the interest

rate upon the uninformative signal is not affected by borrowers’ manipulation, we follow the

same procedure as in the baseline model to compute the equilibrium interest rate r∗∅, as given by

equation (9). We next determine the low-type borrowers’ manipulation and the interest rate r∗H

upon signal si = H .

We can express a low-type borrower’s payoff from manipulation as follows:

u(L,mi) = −C(mi) + ρ ·mi · w(L,min{r∗H , vi})︸ ︷︷ ︸
expected payoff when misrecognized as high type

+ ρ · (1−mi) · w(L,min{r∗L, vi})︸ ︷︷ ︸
expected payoff when recognized as low type

(13)

+ (1− ρ) · w(L,min{r∗∅, vi})︸ ︷︷ ︸
expected payoff when unrecognized

.

The low-type borrower payoff is only affected by the equilibrium interest rates r∗H , r∗L, and r∗∅,

but not the actual interest rates, because when considering manipulation, borrowers don’t know

the actual interest rates offered by the lender and only hold beliefs about these rates. In other

words, the manipulation decisions do not respond to the actual interest rates.

Maximizing the expected profit (13) with respect to the manipulation yields the optimal ma-
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nipulation m∗
i as determined as following: if vi > r∗H , m∗

i is the unique root to the following

equation:

C ′(mi) = ρ (w(L, r∗H)− w(L, vi)) , (14)

and otherwise m∗
i = 0.

Upon observing the high-type signal si = H , the lender chooses rH to maximize the expected

lending profit πH(rH), where

πH(rH) = α(1− F (rH)) (qHrH − (1− qH))

+ (1− α)

∫ R−1

rH

(qLrH − (1− qL))mi(vi; r
∗
H , r

∗
L, r

∗
∅)dF (vi). (15)

Taking the derivative of (15) with respect to rH and setting it to zero at rH = r∗H yields

α(1− F (r∗H))qH − αf(r∗H)(qHr
∗
H − (1− qH))

+ (1− α)qL

∫ R−1

r∗H

mi(vi; r
∗
H , r

∗
L, r

∗
∅)dF (vi) = 0, (16)

which determines the optimal interest rate r∗H . The following lemma summarizes the equilibrium

interest rates and manipulation for a given data coverage ρ.

Lemma 2. Suppose that the borrowers learn about their reservation interest rate before manipula-

tion. Given the data coverage ρ,

(1) When receiving signal si = H , the lender offers interest rate r∗H , where r
∗
H is determined by

equation (16). Moreover, if vi follows a uniform distribution, r∗H is uniquely determined. In

addition, the lender’s optimal interest rates r∗L and r∗∅ upon the respective signals si = L and

si = ∅ are the same as those in the baseline model, i.e., r∗L = R and r∗∅ is determined by equation

(9).

(2) The high-type borrowers and the low-type borrowers with reservation interest rate vi > r∗H

never manipulate their digital profiles. Given the equilibrium interest rate r∗H , the manipulation

intensitymi of the low-type borrowers with reservation interest rate vi is determined by equation

(14).
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Finally, at the beginning of the game, the lender chooses the data coverage to maximize the

expected profit:

Π(ρ) = ρ · α(1− F (r∗H)) (qHr
∗
H − (1− qH))

+ ρ · (1− α) (qLr
∗
H − (1− qL))

∫ R−1

r∗H

mi(vi; r
∗
H , r

∗
L, r

∗
∅)dF (vi)

+ (1− ρ)(1− F (r∗∅)) (q̄r
∗
∅ − (1− q̄)) .

We use numerical analysis to examine the lender’s optimal choice of data coverage. Figure 3

shows that the lender’s profit exhibits a hump-shape pattern against the data coverage. Thus, in

equilibrium the lender can still choose non-full data coverage despite the free data technology.

This figure plots the effect of the data coverage ρ on the lender’s profit when borrowers learn
about their reservation interest rates before manipulation. The parameters are qL = 0.2, qH =
0.8, α = 0.5, R = 2, and c = 0.03.

Figure 3: When borrowers learn their reservation interest rates first: the lender profit

5 Implications

In this section, we explore the implications of our model for the credit lending market.
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5.1 Regulations on the Use of Alternative Data

Using alternative data in credit underwriting models has drawn significant attention from reg-

ulators. For instance, in December 2019 Federal regulators issued a joint statement on the use

of alternative data in credit underwriting, focusing on the consumer protection implications of

the use of alternative data, highlighting potential benefits and risks.3 The regulators believe that

using valid alternative data may not be any riskier than financial data used in conventional credit

evaluation and underwriting process. They also add that forbidding or tightly reining the use of

alternative data may turn out counterproductive by hurting the chances of the underserved.

Our model sheds new light on this debate through the perspective of data manipulation. As

shown in Figure 2, forbidding the use of alternative data limits the borrowers’ manipulation be-

havior (see Panel (a)). The prohibition can have ambiguous effects on the lender’s expected profit

and the borrower surplus, as shown in Panels (b) and (c). Specifically, when only a handful of

alternative data variables are used in the underwriting models, limiting the lender’s data usage

will impair its informed lending decisions and lower the profit. The borrower surplus also de-

creases. By contrast, if the lender has already adopted a large amount of alternative data in its

underwriting models, limiting the use of alternative data instead improves the lender’s profit

because the reduction in borrower manipulation sustains the quality of the data collected by the

lender. In this case, borrower surplus also improves since the better screening helps the high-type

borrowers separate from the low-type ones.

5.2 The Effect of Manipulation Costs

We then examine the effect of the manipulation cost by conducting a comparative statics analy-

sis. This exercise helps shed light on the development of FinTech lending. Figure 4 numerically

illustrates it. As manipulation costs increase, low-type borrowers manipulate their digital pro-

files less intensively. Due to the less manipulation, borrowers’ digital profiles are more closely

connected to their underlying type, which suggests high-quality signals observed by the lender.
3See https://www.federalreserve.gov/newsevents/pressreleases/bcreg20191203b.htm.
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Therefore, the lender increases its data coverage without worrying much about induced manip-

ulation from borrowers and lower signal quality. The lender in turn makes a higher expected

profit from the lending business. Meanwhile, borrowers enjoy a higher expected payoff when

the manipulation cost increases. Although the low-type borrowers become worse off as manipu-

lation becomes more costly, the high-type borrowers benefit as the high cost prevents low-type

borrowers’ manipulation. Overall, the latter effect dominates, and the borrower surplus increases

with the manipulation cost.

(a) Manipulation (b) Data coverage (c) Lender profit (d) Borrower payoff

This figure plots the effect of the manipulation cost on borrowers’ manipulation intensity, the lender’s data
coverage, lender profit, and borrower surplus. The reservation interest rate vi is assumed to follow a uniform
distribution U [0, R− 1], and the manipulation cost function is C(mi) = c ·m2

i . The parameters are qH = 0.8,
qL = 0.2, α = 0.6, and R = 2.

Figure 4: The effect of manipulation cost

The development of FinTech lending features heavier reliance on alternative data in making

fast lending decisions. This can be viewed as a reduction in the manipulation cost because com-

pared with traditional credit metrics such as tax reports and fixed assets, alternative data such as

social media activity is more likely to derive from borrowers’ digital footprints, which are sub-

ject to their manipulation. Our model thus predicts that in the era of FinTech lending, low-type

borrowers are more likely to engage in manipulation, and the lender should optimally respond

by lowering the data coverage. Still, the lender can suffer from a decrease in lending profit. And

the borrower surplus will decrease as well.
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6 Conclusion

FinTech lenders often base their lending decisions on alternative data, which is more likely to

be manipulated by borrowers than the traditional credit metrics. In this paper, we study a credit

lending model in which the lender collects signals about the borrower’s digital profiles, but the

digital profiles can be manipulated by the borrower at a cost. We show that as the lender’s signal

is strengthened by higher data coverage, the borrower is more likely to manipulate her digital

profile, which lowers the lender’s signal quality and impairs its lending decisions. As such, even

if it is costless to cover more data in the underwriting model, in equilibrium, the lender chooses

to avoid exploiting the full potential of its data. In this way, the lender limits the borrower’s

manipulation intensity, thereby sustaining its signal quality and achieving optimal profits.
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Appendix: Proofs

Proof of Lemma 1

Denote the lender’s expected profit as πsi(r) when it observes signal si ∈ {H,L,∅} about bor-

rower i and makes a loan offer at interest rate r. Because signals H and L are fully revealing,

πH(r) = qH(1 + r) − (1 − qH) and πL = qL(1 + r) − (1 − qL). Similarly, in the case that the

lender learns nothing from the borrower’s digital profile (i.e., si = ∅), the lender believes that

the borrower is type H with probability α. Thus, π∅(r) = απH(r) + (1− α)πL(r).

The optimal interest rate that maximizes πsi(r) is denoted as rsi ; that is, rsi = argmaxr πsi(r).

Then, at date 0, given the data coverage ρ the lender’s expected profit is

Π = ρ {απH(rH) + (1− α)πL(rL)}+ (1− ρ)π∅(r∅). (A1)

To prove that the lender optimally chooses ρ∗ = 1, we show that the lender’s expected profit

Π is monotonically increasing in ρ. Observe that as the borrower is taking no action with respect

to manipulation, the offers rH , rL, and r∅ do not depend on ρ. Thus, taking the derivative of the

expected profit in (A1) with respect to ρ yields

dΠ

dρ
= απH(rH) + (1− α)πL(rL)− π∅(r∅).

Thus, dΠ
dρ
> 0 is equivalent to

απH(rH) + (1− α)πL(rL) > π∅(r∅)

⇔ αmax
r
πH(r) + (1− α)max

r
πL(r) > max

r
π∅(r)

⇔ αmax
r
πH(r) + (1− α)max

r
πL(r) > max

r

[
απH(r) + (1− α)πL(r)

]
.

It is straightforward that the last inequality must hold. As such, the lender’s expected profit is

monotonically increasing in ρ and it thus chooses the maximum ρ in equilibrium.
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Proof of Proposition 1

To characterize the optimal interest rates by the lender and the optimal manipulation intensity by

borrowers, we first note that in equilibrium, the lender must charge a (weakly) lower interest rate

for borrowers with a high-type digital profile than those with a low-type digital profile, and thus

only low-type borrowers manipulate their digital profile. Suppose not, i.e., suppose that the lender

sets a higher interest rate for borrowers with a high-type digital profile (i.e., if rH ≥ rL). It is

the high-type borrowers that have the incentives to manipulate their data. Then, upon observing

signal s = H , the lender assures that the borrower must be high type and in turn charges a lower,

rather than a higher, interest rate for the borrower, which is a contradiction.

The following proposition summarizes these discussions.

Proposition A1. In any equilibrium:

(i) The lender charges a strictly lower interest rate for borrowers with high-type digital profiles

than those with low-type digital profiles, i.e., rH < rL;

(ii) High-type borrowers never manipulate their digital profiles. A low-type borrower will manip-

ulate with positive probability if and only if ρ > 0 and vi > rH .

Proof. (i) We prove this part by contradiction. Suppose instead that rH > rL, that is, borrowers

with high-type digital profile are charged higher interest rates. Denote the expected utility of a

borrower of type t with reservation value v who manipulates with probability m as

u(t,m | v) = ρ(mw(t, rt̃)(1− F (rt̃)) + (1−m)w(t, rt))(1− F (rt))

+(1− ρ)w(t, r∅)(1− F (r∅))− C(m), (A2)

where t̃ ̸= t. That is, with probabilitym the manipulation is successful and with probability 1−m

the manipulation fails. The borrower incurs the manipulation cost C(m).

Observe thatw(t, r∅) is not affected by the choice ofm. The borrower takes rH and rL as given

(even though the offers themselves will only materialize at date 1). In equilibrium, manipulation
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is strictly positive if and only if ∂u
∂m

|m=0> 0. As C ′(0) = 0, this condition reduces to

ρ{w(t, rt̃)(1− F (rt̃))− w(t, rt))(1− F (rt))} > 0. (A3)

That is, for m > 0, it must be that (i) ρ > 0 and (ii) ψ ≡ w(t, rt̃)(1 − F (rt̃)) − w(t, rt))(1 −

F (rt)) > 0. The latter condition immediately implies that rt̃ < rt. To see this, suppose that rt̃ ≥

rt. As w(t, r) is strictly decreasing in r, we have w(t, rt̃) ≤ w(rt). Further, 1−F (rt̃) ≤ 1−F (rt).

It is therefore immediate that ψ < 0 and it is optimal to set m = 0. Thus, to have m > 0 in

equilibrium, it must be that rt̃ < rt.

Now, suppose that rH ≥ rL. Then, it must be that mL = 0. Therefore, on receiving an H

signal, the lender knows the borrower must have the H type. On receiving signal L, at best the

borrower is the high type with probability α (and this can only happen if theH type manipulates

with probability 1; else the probability of the high type is strictly less than 1 when signal L is

received).

Now, as we show later, the interest rate offered at a given signal is strictly decreasing in the

proportion ofH types given that signal. Thus it follows that when theL type does not manipulate,

it must be that rH < rL. This contradicts the assumption that rH ≥ rL.

(ii) Given that rH < rL, following similar arguments as above, it follows that the high-type

borrowers will never manipulate their data, i.e.,mH = 0. The low-type borrowers will manipulate

with positive intensity, whenever ρ > 0 and vi ≥ rH , and with zero intensity otherwise.

Proof of Corollary 1

Part (2) of the lemma is straightforward: Since q̄∅ in equation (9) is independent of m, the op-

timal interest rate r∅ is independent of m as well. In addition, rL is set to be R, which is again

independent of m. We next only examine Part (1). Based on equation (7), ∂µH

∂m
< 0. Given that

q̄H = µHqH + (1 − µH)qL, we have ∂q̄H
∂m

< 0. Meanwhile, for a given rH , when m increases,
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the right-hand side (RHS) of equation (8) increases, i.e., ∂
∂q̄H

(
q̄H

q̄H(1+rH)−1

)
< 0. As such, we must

have ∂
∂m

(
q̄H

q̄H(1+rH)−1

)
> 0.

We then argue that when m increases rH increases by contradiction. Suppose instead that

rH decreases. Then, by assumption, the left-hand side (LHS) of equation (8) decreases. However,

as argued above, the RHS of equation (8) is increasing in m for a given rH . Now, a decreasing

rH would further increase the RHS of equation (8). A contradiction. Therefore, we must have rH

increase in m.

Proof of Corollary 2

To simplify analysis, we view ρ as a function ofm. By equation (10), whenm < 1 we can express

ρ as following:

ρ =
C(m)

qL
∫ R−1

rH(m)
(vi − rH(m))dF (vi)

. (A4)

Let’s define G(m) ≡
∫ R−1

rH(m)
(vi − rH(m))dF (vi) so that ρ = C(m)

qLG(m)
. Then,

G(m) = (vi − rH)F (vi) |R−1
rH

−
∫ R−1

rH

F (vi)dvi

= (R− 1− rH) +

∫ rH

R−1

F (v)dv.

Taking derivative of G with respect to m yields

∂G

∂m
= −(1− F (rH))

∂rH
∂m

< 0,

where the inequality follows Lemma 1. Therefore, based on equation (A4) we must have

∂ log(ρ)

∂m
=

1

C(m)

∂C(m)

∂m
− 1

G(m)

∂G(m)

∂m
> 0,

which suggests that ∂ρ
∂m

> 0. Therefore, when m < 1, we obtain ∂m
∂ρ

> 0. Finally, when m = 1, it

immediately follows that ∂m
∂ρ

= 0.
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Proof of Proposition 2

As in the proof of Lemma 2, the analysis is easier if we view ρ and hence the lender’s unconditional

expected profit Π, as a function m. First, we want to show that Π is decreasing in m at the local

of m = 1; that is, ∂Π
∂m

|m=1< 0. Based on equation (11),

∂Π

∂m
=
∂Π

∂m
+
∂Π

∂ρ

∂ρ

∂m

= ρ(1− α)
∂πH(rH(m))

∂m
+ ((α + (1− α)m)πH(rH(m))− π∅(r∅))

∂ρ

∂m
.

When m = 1, πH(rH(m)) = π∅(r∅). This is because when all low-type borrowers manipulate

their data, the lender’s signal will become completely uninformative, leading to the same expected

profit under signal si = H and under uninformative signal si = ∅. We thus have

∂Π

∂m
|m=1= ρ(1− α)

∂πH(rH(m))

∂m
.

Note that based on equation (??),

πH(rH(m)) = (1− F (rH(m)))[q̄H(1 + rH(m))− 1].

Following Lemma 1, we know that whenm increases, rH increases and thus 1−F (rH) decreases.

When m increases, the LHS of equation (8) increases and the numerator of its RHS decreases.

Thus, the denominator of the RHS q̄H(1 + rH) − 1 must decrease. Taken together, when m

increases, the lender’s expected profit πH(rH(m)) must decrease; that is, ∂Π
∂m

|m=1< 0.

Second, based on equation (10) we know that when m = 1,

ρ = ρ̂ ≡ C(1)

qL
∫ R−1

rH(1)
(v − rH(1))dF (v)

.

Finally, combining ∂Π
∂m

|m=1< 0 and ∂ρ
∂m

> 0, we know that ∂Π
∂ρ

|ρ=ρ̂< 0. Therefore, as long

as ρ̂ < 1, the lender will choose the optimal data coverage ρ∗ < ρ̂ < 1 to avoid the worst

case in which every low-type borrower manipulates her type and the signal becomes completely

uninformative.
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Proof of Lemma 2

The majority of the proof is given in the main text. We now prove that the solution to equation

(16) exists and when vi ∼ U [0, R− 1], the solution is unique.

When r∗H = 0, the left-hand side (LHS) of equation (16) is

αqH + αf(0)(1− qH) + (1− α)qL

∫ R−1

0

mi(vi; 0, r
∗
L, r

∗
∅)dF (vi) > 0.

When r∗H = R − 1, the LHS of equation (16) is −αf(R − 1)(RqH − 1) < 0. Therefore, by

intermediate value theorem, there must exist solutions to equation (16).

If vi ∼ U [0, R− 1], the derivative in rH of the LHS of equation (16) is less than zero, or

α
{−2qH
R− 1

}
+ (1− α)

ρqL
2c

{
− 1 +

rH
R− 1

}
< 0. (A5)

The first term is strictly negative, and the second term is strictly negative for all rH < R− 1, and

zero at rH = R− 1. Thus, the FOC is strictly decreasing in rH , and hence in conjunction with it

being positive at rH = 0 and negative at rH = R − 1, we know there is a unique rH at which it

is satisfied. That is, there is a unique equilibrium r∗H .
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