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Abstract

The crypto exchange market is simultaneously fragmented and concentrated: there
are over 1,000 crypto exchanges, but a small number of large exchanges control a sizable
fraction of total market share. How can the long tail of small exchanges coexist with the
deep and large core exchanges? We argue that there is a core-periphery structure to the
strategic interactions among crypto exchanges, causing smaller peripheral exchanges
and large core exchanges to be complements rather than substitutes. In our model,
when the core exchange lists a new token, peripheral exchanges experience increased
volumes from core-periphery arbitrage trade. Thus, peripheral exchanges tend to follow
the token listing decisions of the core exchange. We verify the model’s predictions
empirically. Our results imply that the proliferation of small crypto exchanges may be
detrimental to customers’ trading fees, and also that core exchanges’ listing decisions
may play a systemically important “leader” role in driving trade volumes and listing
decisions of the long tail of peripheral exchanges.
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1 Introduction

The cryptocurrency market has increased drammatically since the debut of Bitcoin in 2009.
As of December 2022, there are over 20,000 cryptocurrencies with a total market cap close
to 1 trillion US dollars. From a market structure perspective, an interesting feature of the
crypto exchange market is that it is simultaneously fragmented and concentrated. On the
one hand, there are over 1000 crypto exchanges, offering essentially the same few assets to
trade.1 There are over 150 cryptocurrency exchanges in the United States alone, compared
to only 16 exchanges for equity trading.2 On the other hand, a substantial fraction of total
industry market share belongs to a small number of very large exchanges. Beginning from
this fact, in this paper, we analyze the structure of strategic interactions between crypto
exchanges. This paper aims to answer a few questions. From a positive perspective, how can
the long tail of small crypto exchanges coexist with the small number of very large exchanges?
Why does exchange market structure not consolidate into a monopoly or oligopoly, where all
customers trade on a small number of large and liquid exchanges? Moreover, from a normative
perspective, is the current fragmented structure of the crypto exchange market beneficial
or harmful, from the perspective of reducing the net trading costs paid by cryptocurrency
traders?

We argue that the answer to these questions is that there is a core-periphery structure
to the nature of strategic interactions among crypto exchanges, which causes the long tail
of small peripheral exchanges and the small number of deep and liquid core exchanges to
be complements rather than substitutes. We construct a simple model of the structure of
competition between exchanges, and empirically test its implications. In our model, a single
token is traded on a number of small peripheral exchanges, which have captive customer bases,
and possibly a large central exchange. When the central exchange enters a market by listing a
new token, it does not cannibalize market share from peripheral exchanges, whose customers
are captive. Rather, the entry of the central exchange tends to increase trade volume on
peripheral exchanges, by inducing inter-exchange arbitrage trade. As a result, the central
exchange and peripheral exchanges are complements, rather than substitutes: peripheral
exchanges will tend to follow the central exchange’s entry decisions, listing tokens which the
central exchange chooses to list a token. Using data on prices, volumes, and listing decisions
of a large number of crypto exchanges, we verify the predictions of the model empirically.

Positively, our results provide a solution to the puzzle of why there are so many crypto
1For example, a partial list of exchanges can be found on Blockspot.io.
2The list of exchanges can be found on the SEC website. Note that 12 of these exchanges are run by three

groups: Intercontinental Exchange Inc NYSE, Nasdaq Inc, and Cboe Global Markets.
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exchanges: exchanges appear to complement each other, rather than cannibalize each others’
market share, as evidenced by the fact that the entry of core exchanges is associated with
entry rather than exit of peripheral exchange. Normatively, our results suggest that the
structure of exchange competition may be detrimental to consumers, in the sense that their
costs of token trading are increased by exchange fragmentation. Moreover, core exchanges
appear to play a systemically important “leader” role, in driving the trade volumes and listing
decisions of the long tail of peripheral exchanges.

We begin by constructing a simple model of the strategic interactions between a single
core exchange and a number of peripheral exchanges. There is a single risky asset, or “token”,
which can be traded on the a large core exchange, or a number of small peripheral exchanges.
The core exchange has infinite market depth. Each peripheral exchange has a captive customer
base, which can only trade on the peripheral exchange. Customers receive inventory shocks for
the risky asset, motivating them to trade on the peripheral exchange. Inventory shocks have
an aggregate and idiosyncratic component. Customers have holding costs for the asset, so
aggregate inventory shocks generate pressure on peripheral exchange prices. Each peripheral
exchange also has a set of arbitrageurs, who can trade on the peripheral exchange and the
central exchange to partially close price gaps for the risky asset. Arbitrageurs have inventory
costs, implying that they cannot fully close price gaps induced by inventory shocks. Peripheral
exchanges collect fees depending on trade volume, and list the coin if anticipated fees are
greater than an exogeneous cost of listing.

We analyze equilibrium outcomes of the model, with and without the presence of the central
exchange. In the absence of the central exchange, trade on peripheral exchanges is generated
only by the idiosyncratic component of customers’ inventory shocks. If customers have
positive inventory positions on average, they cannot sell these positions to others, so the token
price must decrease significantly to clear the market. Inventory shocks thus have relatively
large effects on prices, and trade volumes are relatively low. When the central exchange
lists the coin, arbitrageurs trade to partially close the price gaps between the peripheral
exchange and the central exchange. This effectively gives peripheral exchange customers
partial access to central exchange liquidity, decreasing the price impact of aggregate inventory
shocks. Moreover, arbitrage activity generates increased trade volume on the peripheral
exchange, which also increases the expected profits of the peripheral exchange.

The model makes a number of predictions which we bring to the data. First, when the
core exchange lists a token, trade volumes of the token on existing peripheral exchanges
should actually increase. This is because we assumed that peripheral exchanges’ customers
are fully captive, so the core exchange’s entry does not directly cannibalize the peripheral
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exchange’s customers; however, the entry of the central exchange increases volume by allowing
arbitrage trade with the peripheral exchange. Second, peripheral exchanges should tend to
follow the core exchange’s token listing decisions: peripheral exchanges are more likely to list
a token after the core exchange has listed it, since peripheral exchange volumes and profits
are higher when the central exchange is present.

Third, the structure of price correlations between exchanges should have a core-periphery
structure. Peripheral exchange prices consist of the core exchange’s price, plus noise generated
by inventory shocks of the peripheral exchange’s customers; thus, the correlation between
a peripheral exchange’s price and the core exchange’s price should be greater than the
correlation between two peripheral exchanges’ prices. Fourth, the entry of a central exchange
should decrease the volatility of token prices, as well as the dispersion of prices across
peripheral exchanges. This is because, once the central exchanges allows trading of the token,
arbitrageurs can more effectively trade to equalize prices across peripheral exchanges. Finally,
all these phenomena should be correlated with each other: peripheral exchanges which rely
more on arbitrage with the central exchange should have larger volume increases when the
central exchange lists, stronger price correlations with the central exchange, and also prices
more correlated with the central exchange.

We proceed to test the predictions of the model empirically. We use data on top 500 coins’
prices, volumes, and listing decisions across 262 exchanges from January 2017 to July 2022.

We find that a coin’s trading volume significantly increases after the listing on the central
exchange. The results hold general and are not driven by specific countries. Also, we find
that other exchanges follow the central exchange’s listing decisions. In addition, we show that
price correlation with the central exchange and listing following with the central exchange are
positively correlated across exchanges, suggesting the structure of price correlations between
exchanges should have a core-periphery structure. Moreover, we find that a coin’s volatility
and price dispersion on peripheral exchanges decrease after it is listed on the central exchange.
Finally, we find evidence that peripheral exchanges that have stronger price correlations with
the central exchange have larger volume increases when the central exchange lists. All these
empirical results are consistent with theoretical predictions.

From a positive perspective, our results help to address the question of why so many
crypto exchanges coexist. When peripheral exchanges’ customer bases are segmented, but
arbitrageurs can trade the peripheral exchange against the central exchange, the presence
of the central exchange in a market in fact benefits peripheral exchanges, as it allows them
to offer deeper effective liquidity to their captive customer base. Thus, far from competing
against each other, peripheral exchanges are economic complements to core exchanges, and
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proactively enter markets once they observe the core exchange entering. So long as peripheral
exchanges’ customer bases remain segmented by some force, market structures with a large
proliferation of exchanges can be sustained in equilibrium; in fact, entry of large exchanges
promotes increased entry of smaller exchanges.

From a normative perspective, our results suggest that the proliferation of crypto exchanges
may ultimately result in consumers paying increased fees to peripheral exchanges, and inter-
exchange arbitrageurs, to access central exchange liquidity. In our model, customers would on
average do better if they traded directly on the deep central exchange; our result suggest that
there appear to be barriers to entry to customers doing so. Our results do not pin down the
precise nature of these frictions. One possibility is that there are regulatory or jurisdictional
barriers, preventing customers from accessing central exchanges directly; peripheral exchanges
thus act essentially as regulatory-arbitrage “conduits”, giving their customers imperfect
access to central exchange liquidity through imperfect arbitrage activity, and collecting fees
for this service. Another possibility is that consumers are unsophisticated, are attracted
to peripheral exchanges through advertising, and face search frictions for directly trading
on central exchanges; peripheral exchanges are thus able to collect spreads from the fact
that their customers are not sophisticated enough to switch to the deeper central exchange.
Both hypotheses suggest that consumers may be better off if these frictions were eliminated,
allowing customers to trade in a large central exchange, disintermediating both peripheral
exchanges and the arbitrageurs which profit from the spreads between central and peripheral
exchanges.

Another implication of our results is that core crypto exchanges are potentially system-
atically important players in crypto markets, with substantial power to affect asset prices,
volumes, and liquidity. Core exchanges’ listings decisions induce peripheral exchanges to list
the same token, and also lead to volume increases on peripheral exchanges that have already
listed a token. Despite this power, core exchanges currently have a large degree of freedom
to decide which assets to list.3 Given the importance of core exchanges’ listing decisions,
regulators may wish to monitor the listing decisions of large crypto exchanges, for example
requesting that exchanges provide data on tokens they plan to list, and the reasoning for
listing these tokens.

This paper relates most closely to a few other papers that study cryptocurrency exchanges.
Chan et al. (2020) document 10 stylized facts about cryptocurrency exchanges and cryp-
tocurrency trading, using unique data from a medium-sized cryptocurrency exchange in Asia.
Makarov and Schoar (2020) show that there are large price differences in cryptocurrency

3Exchanges’ ability to list tokens varies by jurisdiction, however; for example, exchanges serving US
customers tend not to list tokens which are likely to violate US securities regulations.
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across different exchanges, leading to arbitrage opportunities. Our paper also fits into a
broader literature on the economics of cryptocurrencies. Several theoretical papers examine
the rationale and mechanisms of cryptocurrencies (e.g., Cong and He, 2019; Cong, Li and
Wang, 2019; Catalini and Gans, 2018; Sockin and Xiong, 2018). A number of other papers
empirically analyze the crypto ecosystem. Liu and Tsyvinski (2018) provide one of the first
comprehensive analyses of the risk-return tradeoff of cryptocurrencies. Liu, Tsyvinski and Wu
(2019) examine the cross-section of cryptocurrency returns and establish a factor model. A
set of empirical papers study factors that contribute to ICO success, including Deng, Lee and
Zhong (2018), Lee, Li and Shin (2019), Davydiuk, Gupta and Rosen (2022), and Lyandres,
Palazzo and Rabetti (2020). Liu, Sheng and Wang (2021) contruct a tech index from ICO
whitepapers and find that cryptocurrencies with higher tech index tend to outperformance in
the long-run. Li, Shin and Wang (2021) find that pump-and-dump schemes are pervasive in
the cryptocurrency market. Unlike these papers, our paper focuses on the crypto exchanges
rather than crypto.

The paper proceeds as follows. Section 2 describes institutional background around
cryptocurrency exchanges. Section 3 describes our model and its predictions. Section 4
describes the data that we use. Section 5 contains our empirical results. We conclude in
Section 6.

2 Institutional Background

Cryptocurrency exchanges, analogous to exchanges for stocks, bonds, and other financial
assets, allow customers to exchange fiat currencies for cryptocurrencies. Crypto exchanges
function in a custodial manner: they allow users to “deposit” fiat or cryptocurrencies, hold
fiat currencies and cryptocurrencies on behalf of users, and allow users to trade their custodied
fiat and crypto with other users of the exchange. For the vast majority of exchanges, trading
in each assets is governed through limit-order books.

Like regular financial asset exchanges, users can deposit and withdraw fiat through bank
transfers or other means. A unique feature of cryptocurrency exchanges, relative to exchanges
for stocks or other traditional financial assets, is that users can also deposit or withdraw
cryptocurrencies from the exchange. Users can “withdraw” custodied assets, instructing the
exchange to send funds held on her behalf to her own private “wallet” address. Users can
also deposit cryptocurrencies, sending it to a designated “deposit” address, and receiving
on-exchange custodially-owned crypto in exchange. The ability to deposit and withdraw
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implies that an important function of crypto exchanges is also to serve as “on/off-ramps” for
crypto: allowing users to deposit fiat, exchange fiat for crypto, and withdraw crypto, or vice
versa.

As an example of the role cryptocurrency exchanges play in the process of using cryptocur-
rencies, in Appendix A.1, we describe in detail how a customer would use crypto exchanges
and cryptocurrency on-chain transfers to perform an international funds transfer, exchanging,
for example, fiat currency in the USA for fiat in the Philippines. In short, a customer would
exchange USD fiat for cryptocurrencies using a US crypto exchange, and send the crypto
to the funds receipient, who would then exchange the crypto for Phillipine fiat currency.
Using cryptocurrencies to perform such transfers is convenient because it allows consumers to
partially circumvent capital controls and other restrictions imposed by policymakers, as well
as fees charged by intermediary financial institutions who facilitate traditional international
remittances. Appendix A.1 also briefly discusses the regulation of crypto exchanges. Crypto
exchanges have nontrivial difficulty in expanding across jurisdictions for a number of reasons.
First, since crypto exchanges must allow both crypto and fiat deposits and withdrawals,
exchanges must be able to integrate with local banking systems for fiat funds transfers.
Secondly, due to the necessity of integrating with local banking systems, crypto exchanges
logistically must work with local financial regulators, and are subject to varying regulations
depending on the jurisdictions they operate within.

There are a number of other uses of cryptocurrencies besides remittances: users in countries
with high inflation or low confidence in financial institutions might buy and self-custody
cryptocurrencies as a store of value.4 Cryptocurrencies can also be used to perform a number
of simple financial transactions, within the space of “decentralized finance.”5 In addition,
many market participants purchase cryptocurrencies on centralized exchanges to speculate
on crypto price appreciation.

While we focus on the role of crypto exchanges in facilitating spot trading, crypto
4See CNBC and Rest Of World for a discussion of the use of cryptocurrencies as a store of value in

Lebanon.
5For example, market participants can use stablecoin tokens to purchase other blockchain tokens, such

as ETH, MKR, or UNI, using an automated market maker protocol such as Uniswap. Market participants
can also lend stablecoin tokens on lending and borrowing protocols, such as Aave and Maker, allowing them
to receive positive interest rates, and also to use these assets as collateral to borrow other assets. Market
participants can speculate on the prices of assets using derivatives-like contracts, on platforms such as dydx.
These functionalities are enabled not by trusted centralized financial intermediaries, or legal contracts, but by
pieces of code embedded in the blockchain, which programmatically perform transactions, like exchanging
one crypto token for another, in a fully automated manner which does not involve any human discretion. In
this way, the blockchain ecosystem allows individuals to engage in a number of simple financial transactions,
such as trading assets, borrowing and lending, and speculating, in a way that does not require trust in any
legal system, financial institution, or other human entity.
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exchanges also offer consumers other products. Some exchanges also offer individuals the
ability to short cryptocurrencies or use leverage, as well as various derivative products such as
futures and options; see, for example, Bybit and Binance. Some exchanges also pay consumers
interest rates on users’ custodied cryptocurrencies, in a manner similar to bank deposits
or CDs. Two such examples are Binance and Coinbase. Like traditional exchanges, crypto
exchanges also offer market data and analytics products; see, for example, Binance.

The primary motivating fact behind our analysis is that, paradoxically, the cryptocurrency
exchange market is simultaneously fragmented and concentrated. On the one hand, there
are a very large number of crypto exchanges: according to Blockspot.io, as of 2023 there are
over 1,000 different exchanges offering fairly similar assets to trade. On the other hand, a
small number of very large exchanges account for a sizable fraction of total market share.
Figure 1 shows the market share of the top 5 exchanges in our data, and all others, for
BTC volume. The market share of the top 5 exchanges is fairly large, reaching 20% in 2022.
Moreover, this is likely an underestimate of the top exchanges’ market shares, since small
exchanges are anecdotally known to falsely overreport or manipulate trade volumes (Cong
et al., 2020). This motivates the core question we try to answer in this question, of how large
core exchanges and the long tail of smaller peripheral exchanges can coexist.

3 Model

We construct a model where a single token is traded on an infinitely deep “core” exchange,
and a number of “peripheral” exchanges with lower depth. The model allows us to analyze
how exchanges’ prices are related to each other, and how the core exchange’s listing decisions
affect the peripheral exchanges’ trade volumes and listing decisions. Technically, the model
builds on the literature on double-auction models with inventory costs (Vayanos, 1999; Vives,
2010; Du and Zhu, 2017; Chen and Duffie, 2021; Zhang, 2022).

There is a single risky asset, which we will call a “token”. There is a central exchange, on
which the price of the asset is ψ; the central exchange is infinitely deep, in the sense that
there are market makers with infinite capacity, offering to buy or sell arbitrary amounts of
the asset at price ψ. We assume ψ has mean µψ and standard deviation σψ. There are also
N peripheral exchanges, indexed by j. There are two kinds of market participants on the
peripheral exchanges: users, who demand liquidity, and arbitrageurs, who trade against price
deviations between the peripheral exchange and the central exchange, subject to inventory
costs.

Each peripheral exchange has a unit measure of users with some demand to trade the risky
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asset, in order to reduce inventory costs. Users are constrained to only trade on exchange j.
User i has utility ψ per unit of the risky asset, and suffers inventory costs γj

2 x
2 if she holds a

net position x in the risky asset. User i begins with xi,0 units of the risky asset. This position
could be thought of as either a literal inventory position, or more generally as a demand
shock for the risky asset; for example, i may receive information that induces her to want to
take a long or short position in the risky asset. Hence, i’s monetary utility for receiving z net
units of the risky asset, thus ending with x = xi,0 + z units of the risky asset, is:

ui (z) = ψ (z + xi,0) − γj
2 (z + xi,0)2 (1)

Users’ inventory position has a systematic and an idiosyncratic component. The standard
deviation of xi,0 across users on exchange j is σI,j. The mean of xi,0 is ηj, which itself is
random with mean µj and standard deviation σA,j. We assume ηj is uncorrelated with ψ,
and ηj, ηj′ are uncorrelated for all peripheral exchanges j, j′. ηj can thus be thought of as
an aggregate inventory shock which affects all users on exchange j. We assume exchange j
charges a quadratic trading fee to users; if the user trades z units of the asset, she pays a fee
τj

2 z
2 to the exchange. The assumption that trading fees are quadratic simplifies the analysis,

but can be relaxed without changing the qualitative results. Since users are atomistic, each
user’s trades have a negligible effect on overall exchange prices, so users ignore their price
impact. If a user purchases z units of the asset at price pj with position xi,0, her total value
is thus:

Vi = ψ (zi + xi,0)︸ ︷︷ ︸
Fundamental Value

− pjzi︸︷︷︸
Net Payment

− γj
2 (zi + xi,0)2︸ ︷︷ ︸
Inventory Costs

− τj
2 z

2
i︸ ︷︷ ︸

Exchange Fees

(2)

where we have ignored the agent’s initial wealth for simplicity, since it only additively shifts
Vi and does not affect any decisions agents make. Differentiating, agents i’s marginal utility
for purchasing an additional unit of the asset is:

∂Vi
∂zi

= ψ − pj − γj (zi + xi,0) − τjzi

Setting to 0, agent i’s demand for the asset, as a function of the price pj, is:

zi = −γj
γj + τj

xi,0 + ψ − pj
γj + τj

(3)

Integrating over all users, aggregate demand from users on exchange j at price p is:

Zuser,j (pj) =
� ∞

−∞
zi (x) dFxi,0 (x) = −γj

γj + τj
ηj + ψ − pj

γj + τj
(4)
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Each peripheral exchange j has a unit measure of atomistic arbitrageurs, who can trade the
risky asset on j as well as the central exchange. We will assume arbitrageurs for exchange j
cannot trade on other peripheral exchange. Let k index arbitrageurs. Arbitrageurs have utility
linear in money. They cannot hold net inventory, so they must buy on the central exchange
as much as they sell on the peripheral exchange. Let zk be the net amount arbitrageur k
buys on j and sell on the central exchange. Arbitrageurs face quadratic inventory costs for
arbitrage: they incur a cost ζj

2 z
2
k for arbitraging k net units of the asset. Arbitrageurs pay

the same fees as users: if they trade a quantity zk, they pay fee τj

2 z
2
k. Hence, arbitrageurs’

value for buying zk units at price pj on exchange j, and selling at price ψ on the central
exchange, is:

Vk (zk) = zk (ψ − pj) − ζj
2 z

2
k − τj

2 z
2
k

Differentiating, arbitrageurs’ marginal utility for purchasing an additional unit of the asset is:

∂Vk
∂zk

= ψ − pj − ζjzk − τjzk

Arbitrageur k’s demand for the risky asset at price pj is thus:

zk = ψ − pj
ζj + τj

Integrating demand over the unit measure of arbitrageurs on exchange j, we have:

Zarb,j (pj) = ψ − pj
ζj + τj

(5)

Peripheral exchange j’s profits, if trade volume is zi for each user, are:
� ∞

−∞ z2
i (x) dFxi,0 (x).

We assume exchange j has some cost Cj of listing tokens. Hence, exchange j will list the
risky asset if it anticipates profits greater than Cj from listing. We will think of the central
exchange’s listing decisions as exogeneous. In practice, the central exchange’s listing decisions
are driven by

3.1 Equilibrium

In equilibrium, aggregate demand from users and arbitrageurs sums to 0 on each exchange.
Thus, adding (4) and (5), market clearing on exchange j requires:

Zuser,j (pj) + Zarb,j (pj) =
(

−γj
γj + τj

ηj + ψ − pj
γj + τj

)
+ ψ − pj
ζj + τj

= 0
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The following proposition solves for prices, volumes, and exchange profits when the central
exchange does not list the token.

Proposition 1. When the central exchange does not list the token, the equilibrium price on
exchange j is:

p∗
j,0 = ψ − γjηj (6)

Expected squared trade quantity is:

E
[
z∗2
i,0

]
=
(

γj
γj + τj

)2

σ2
I,j (7)

Exchange j’s profit from listing the token is:

π∗
j,0 =

τj
2

(
γj

γj + τj

)2

σ2
I,j (8)

Exchange j lists the token if its cost of listing is lower than (8).

The following proposition solves prices, volumes, and exchange profits when the central
exchange does list the token.

Proposition 2. When the central exchange does list the token, the equilibrium price on
exchange j is:

p∗
j,1 = ψ − ζj + τj

γj + ζj + 2τj
γjηj (9)

Expected squared trade quantity is:

E
[
z∗2
i,1

]
=
(

γj
γj + τj

)2
σ2

I,j +
(

γj + τj
γj + ζj + 2τj

)2

η2
j

 (10)

Exchange j’s profit from listing the token is:

π∗
j,1 =

τj
2

(
γj

γj + τj

)2
σ2

I,j +
(

γj + τj
γj + ζj + 2τj

)2

η2
j

 (11)

Exchange j lists the token if its cost of listing is lower than (11).

The intuitions behind Propositions 1 and 2 are as follows.

Prices. Expression (6) states that the price on exchange j, in the absence of the
centralized exchange, is the “efficient price” ψ, minus the aggregate inventory shock ηj times
users’ inventory cost γj. If the aggregate component of inventory shocks ηj is positive, there
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is no other exchange for users to sell their endowments to; exchange j’s price must then
be higher than ψ in order to clear the market. The gap between exchange j’s price and ψ

depends on ηj, and users’ cost of holding inventory, γj.

When the centralized exchange lists the token, arbitrageurs trade against this price gap,
buy from the CEX at price ψ and selling to the peripheral exchange. Arbitrage cannot
perfectly close the gap, because arbitrageurs also face transaction fees and inventory costs.
Comparing (6) and (9), arbitrageurs decrease the effect of inventory shocks on prices by a
factor:

ζj + τj
γj + ζj + 2τj

(12)

When trading costs τj are low, and arbitrageurs’ inventory costs ζj are low relative to users’
costs γj, prices will tend to converge towards ψ significantly when the centralized exchange
lists.

Trade volumes and exchange profits. In the absence of a centralized exchange, trade
on peripheral exchanges is generated only by the idiosyncratic component of inventory shocks:
(7) states that volume depends on the variance of users’ endowments σ2

I,j, as well as a factor
which reflects how large transaction fees τj are relative to users’ inventory costs γj. When
a centralized exchange enters, trade is generated by both the idiosyncratic and aggregate
components of inventory shocks, since arbitrageurs can buy on the central exchange and sell
to the peripheral exchange. (10) shows that expected squared trade volume can be cleanly
decomposed into an the sum of (7), and an extra term reflecting the aggregate shock ηj,
and the multiplier (12) capturing how active arbitrageurs are. Thus, expected squared trade
volume of peripheral exchanges is strictly higher when the central exchange lists the token.
Since profits are proportional to squared trade volume, peripheral exchanges’ profits are also
higher when the central exchange lists.

Next, using these propositions, we derive a number of predictions to bring to the data.

3.2 Comparative Statics and Predictions

Prediction 1. If peripheral exchange j lists the token before the central exchange, j will
experience a volume increase when the central exchange lists the token.

Prediction 1 follows directly from comparing (7) and (10), and the intuition that the
aggregate component of inventory shocks also contributes to trade volume after the CEX lists
the token. This is a nontrivial prediction, because it suggests that exchanges are complements
rather than substitutes. They are complements due to bridge arbitrage.
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Prediction 2. Listings will tend to follow the central exchange: when the central exchange
lists the token, some peripheral exchanges which previously did not list the token will choose to
list the token. Formally, peripheral exchanges’ profit with the central exchange, (11), is greater
than peripheral exchanges’ profit without the central exchange, (8), so the set of peripheral
exchanges which lists the token is strictly larger after the central exchange enters.

Prediction 2 follows from (8) and (11). When the central exchange enters, expected profits
on all peripheral exchanges increase. Thus, once the central exchange lists the token, all
peripheral exchanges which have already listed have no incentive to unlist, even if the listing
decision is fully reversible and the cost can be recovered. Moreover, some exchanges which
previously did not list the token will find it profitable to list the token. This prediction
essentially implies that the core exchange is a complement to peripheral exchanges; in
particular, this prediction contrasts with standard models of imperfect competition, in which
the entry of a large competitor should cannibalize smaller competitors, and decrease incentives
for entry.

The next prediction concerns the structure of prices correlations across exchanges. We
first derive expressions for these correlations.

Proposition 3. The coefficient of determination R2 between the central exchange’s price,
and peripheral exchange j’s price, is:

R2
j,CE =

Cov2
(
p∗
j , ψ

)
V ar

(
p∗
j

)
V ar (ψ)

=
σ2
ψ

σ2
ψ +

(
ζj+τj

γj+ζj+2τj

)2
γ2
jσ

2
A,j

(13)

The R2 between the prices of exchanges j and j′ is:

R2
j,j′ =

Cov2
(
p∗
j , p

∗
j′

)
V ar

(
p∗
j

)
V ar

(
p∗
j′

)
=

σ2
ψσ2

ψ +
(

ζj+τj

γj+ζj+2τj

)2
γ2
jσ

2
A,j


σ2
ψσ2

ψ +
(

ζj′ +τj′

γj′ +ζj′ +2τj′

)2
γ2
jσ

2
A,j′


(14)

Prediction 3. We always have:
R2
j,CE ≥ R2

j,j′

That is, the correlation between the central exchange price and the price on any peripheral
exchange j is stronger than the correlation between the prices on peripheral exchanges j and
j′.
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In words, Prediction 3 states that the structure of price correlations between exchanges
inherits the core-periphery structure of the exchange network: peripheral exchanges’ prices
are more correlated with the central exchange than they are with each other. This is because,
from expression (9), each peripheral exchange’s price is equal to the central exchange’s
price, plus an error term reflecting aggregate inventory shocks on the peripheral exchange
which are imperfectly eliminated by arbitrageurs. Thus, R2

j,CE reflects the correlation of the
central exchange price ψ, with a price which is ψ plus a noise term, whereas R2

j,j′ reflects the
correlation between two prices which are each equal to ψ plus a noise term.

Prediction 4. Consider all peripheral exchanges j which list the token before the central
exchange. The volatility of token prices on these exchanges will fall after the central exchange
lists the token. The cross-sectional dispersion of prices across these exchanges will also fall
after the central exchange lists the token.

Prediction 4 follows because, from (6), the variance of j’s prices when the centralized
exchange does not list is

σ2
ψ + γ2

jσ
2
A,j

Whereas the variance when the centralized exchange lists is, from (9), the smaller quantity:

σ2
ψ +

(
ζj + τj

γj + ζj + 2τj

)2

γ2
jσ

2
A,j

Intuitively, arbitrage with the centralized exchange decreases the effect of inventory shocks
on peripheral exchanges’ prices, limiting volatility. The prediction about dispersion follows
similarly. Suppose for simplicity that exchanges are symmetric, so σ2

A,j = σ2
A for all exchanges.

The dispersion of peripheral exchange prices around ψ is γ2
jσ

2
A without the central exchange,

and the lower quantity (
ζj + τj

γj + ζj + 2τj

)2

γ2
jσ

2
A

with the central exchange. Again, arbitrage with the central exchange causes peripheral
exchange prices to cluster more closely around ψ.

Prediction 5. When peripheral exchanges differ mainly in their arbitrage costs ζj, peripheral
exchanges whose prices are more correlated with the central exchange, and whose trade
volumes tend to increase more when the central exchange lists a token, will also have a
stronger tendency to list following the central exchange’s listing decisions. Formally, we have:

∂R2
j,CE

∂ζj
=

−2σ2
ψσ

2
A,jγ

2
j (ζj + τj) (γj + τj)[

σ2
ψ +

(
ζj+τj

γj+ζj+2τj

)2
γ2
jσ

2
A,j

]2
(γj + ζj + 2τj)3

≤ 0
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∂∆E [z∗2
i1 ]

∂ζj
= − 2(γj + τj)2

(γj + ζj + 2τj)3

(
ηj
σI,j

)2

≤ 0

∂∆π∗
j

∂ζj
= − 2(γj + τj)2

(γj + ζj + 2τj)3

(
ηj
σI,j

)2

≤ 0

Prediction 5 follows if there are differences in how “connected” peripheral exchanges are
to the central exchange, which in our model corresponds to the arbitrageur inventory cost
parameter ζj . For a peripheral exchange with lower ζj , prices will tend to be more correlated
with the central exchange; the central exchange’s listings will tend to increase volumes more;
and the central exchange’s listing decisions will increase the peripheral exchange’s profits
more, implying that the peripheral exchange has a stronger incentive to “follow” the central
exchange’s listing decisions. If Prediction 5 holds in the data, this indicates empirically that
the three separate phenomena we observe – price correlations, volume increases, and listing
following – are statistically associated, increasing our confidence that they are driven by the
same underlying economic phenomenon.

3.3 Discussion of Assumptions

Our baseline model assumes a simple model in which users are tied to a single peripheral
exchange, and cannot move across exchanges. If users were able to move across peripheral
exchanges and the central exchange, perhaps at some cost, this would cause exchanges to
become partially substitutes for each other; one exchange’s listing decision could potentially
cannibalize volume from other exchanges, as users move to the exchange which has newly
listed the token. This force would tend to push against the effects that we find, causing
exchanges to tend to be substitutes instead of complements. If the user substitution force
were strong enough, listings could tend to decrease trade volumes, and the central exchange’s
decision to list may cannibalize enough volume that it induces peripheral exchanges to unlist.
This runs counter to the evidence we find empirically. We thus assume away this effect for
expositional simplicity.

Our baseline model also does not feature the “listing pump” effect, that central exchange
listings tend to associate with increased token prices, which is emphasized in a number of
academic and industry studies. Since the main focus of our paper is to analyze the structure of
competition between exchanges, we do not discuss the listing pump effect in detail. However,
there are a number of ways to derive the listing pump effect in the context of our model. One
approach would be to assume that aggregate inventory shocks ηj have positive means; that
is, users on peripheral exchanges have a net positive endowment of the asset. Inventory costs
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then tend to depress prices on peripheral exchanges, and the entry of the central exchange
will tend to alleviate this negative price pressure and raise token prices. The listing pump
effect could also be microfounded from a richer multi-period model, in which the entry of the
central exchange increases market depth and decreases volatility of the token, thus pushing
prices upwards through a “liquidity premium” effect.

A number of other assumptions are made largely for expositional simplicity. We assume
the central exchange has infinite depth; it is sufficient for our effects that the central exchange’s
depth is finite, but much greater than peripheral exchanges’ depth. We assume arbitrageurs
can only trade the peripheral exchange against the central exchange; it is sufficient that the
cost of doing this is lower than the cost of arbitraging two peripheral exchanges against each
other. In our conversations with practitioners, most market makers in practice appear to
trade smaller exchanges with larger central exchanges. One reason for this is that being
a market maker on an exchange often involves direct negotiations with the exchange for
special access, and it is potentially difficult to enter into multiple of these agreements at
once. We assume there is a single central exchange; in practice, there are a number of bigger
exchanges which likely behave more like central exchanges, and smaller exchanges which
behave more like peripheral exchanges. In our empirical analysis, we will treat a few of the
largest exchanges as central exchanges, and the long tail of smaller exchanges as peripheral.

4 Data

The primary dataset we use in this paper is from cryptotick.com, which collects trade-pair
information among cryptocurrencies and fiat currencies from a broad set of cryptocurrency
exchanges. Cryptotick obtains this data by querying APIs provided by the exchanges.6 The
dataset contains hourly OHLCV data, that is, open, high, low and close prices, as well as
total trade volume, each hour on each exchange. We aggregate the data to daily data for
each coin-exchange pair.

In total, there are 264 exchanges for 12,417 coins in the raw dataset. The data spans
from January 2017 to July 2022. Many of these coins are not actively traded. Also, many
exchanges only have limited trading volume. For the purpose of this paper, we do not need
to include all the exchanges and all the coins. In our final sample, we focus on the top
500 coins ranked by by coinmarketcap.com on September 3, 2022. We also focus on 27

6We verify the data quality of Cryptotick with other major data sources. For example, existing literature
show there is a large volume of wash trading in some exchanges.Our verfication confirms that the data quality
of Cryptotick is high. The details can be found in the Internet Appendix.
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major fiat currencies.7 We include two types of transactions: 1) transaction between coins
and major fiat currencies, 2) transactions between coins and Bitcoin, Etheruem, and major
stablecoins (USDT, USDC, BUSD). For the first type of transaction, we convert the value
to US dollar based on the same day exchange rate. For the second type of transactions,
we also convert the value to US dollar based on the same day price of these intermediary
coins (BTC, ETH, USDT, USDC, BUSD)8. As a result, the final sample consists of 500 coins
across 262 exchanges. In some of the analysis, we focus on coins that are traded in the top
10 cryptocurrency exchanges based on total trading volume in the sample period.9 Appendix
C contains more details about the data cleaning process. We identify the listing date of a
coin on an exchange from observing the first date it appears on an exchange in our price and
volume data. Summary statistics of the data are shown in Table 1.

[Table 1 here]

To understand the structure of the cryptocurrency exchange market, we first check which are
major exchanges in the sample. Binance is the largest exchange in terms of total trading
volume. Further, we examine whether Binance lists coins first relative to other exchanges.
The relative listing time ranking of coins i for exchange e rankingi,e is defined as:

rankingi,e = listing ranking of coin i for exchange e− 1
total listing times of coin i

(15)

Therefore, rankingi,e index takes value from 0 to 1, where 0 means that exchange e is the
first to list the coin c among all exchanges and 1 means that exchange is the last. Figure
2 plots the distribution of this above ranking index for ten top exchanges ranked by 2022
total volume. Binance lists coins first relative to other exchanges, and other large exchanges
seem not to have a clear listing pattern in terms of listing times.

[Figure 2 here]

5 Empirical Results

We proceed to test our model’s predictions empirically. Prediction 1 states that, when the
central exchange lists a token, trade volumes of the token on other exchanges which have
already listed the token should increase. To test this, we estimate the following difference-in-

7These 27 major fiat currencies include: NZD USD KRW JPY CNY IDR SGD VND TWD AUD PKR
ZAR TRY MXN BRL CHF ILS PLN GBP RUB EUR CAD HKD INR SAR AED SEK.

8Exchange rate data is obtained from the BIS website, and major cryptocurrency conversion rates are
obtained from Yahoo Finance.

9This sample is comparable to that in the literature. Expanding the sample will not make our results weaker
because we expected to see stronger effects among small coins and low-ranked cryptocurrency exchanges.
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differences specification:

Log(V olume)i,t = α + βListingi,t + δi + ηt + ϵi,t (16)

where i indexes coins and t indexes days. We restrict our sample to those exchange-coin pairs
that list coins more than 30 days before major exchange’s listings, and Log(V olume) is the
total trading volume of those incumbent exchange-coin pairs for coin i at day t. Listing is a
dummy variable, equal to one for coin i on date t if a major exchange has listed coin i prior to
date t. we estimate specifications where we use Binance or Coinbase as the major exchange. δi
and ηt are respectively coin and date fixed effects. The DID specification essentially compares
the change in volume for coins just before and after they are listed by a major exchange, to
the volume change for coins that do not experience a listing event.

Before we estimate specification (16), we test for parallel trends between listed and non-
listed coins, by estimating a fully flexible period-by-period equation that takes the following
form:

Log(V olume)i,t = α +
30∑

τ=−30
βτListingi,τ + δi + ηt + ϵi,t (17)

where all variables are defined as in Equation (16). The only difference from Equation (16)
is that in Equation (17), we add the one-day dummy variable Listingτ rather than the
post-listing indicator variable Listing, treating observations more than 30 days before the
listing as the reference group. The estimated vectors of βτ reveal the differences between the
treated and control coins during each period.

Figure 3 plots the estimates of Equation (17) and their 95% confidence intervals. A clear
pattern emerges from this figure. The difference between the treated and control groups
is small and not significant in magnitude before listings, suggesting no differential trends
between the two groups prior to listings. Furthermore, the coefficients surge and peak at 0
days and start to decrease after that, which follows our expectation that listing has positive
effects on coin’s volume.

[Figure 3 here]

We now test Equation (16). Table 3 presents the results of this test. Given the central
status of Binance, we first examine the effect of listing on Binance on trading volume. Column
(1) shows that the coefficient on Listing is positive and statistically significant, suggesting
that trading volume increases after listings on the central exchange. The results are robust
to including control variables and fixed effects. This is consistent with the model prediction.
We also examine the listings on Coinbase, another major exchanges, and find similar results.
We also find the effect is heterogeneous across two major exchanges. The effect is stronger in
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Binance as suggested by the magnitude of the coefficient on Listing.
[Table 3 here]

The second prediction we test is whether other exchanges follow the central exchange’s
listing decision. To test this idea, for each major exchange, we calculate the number of listings
on other exchanges 100 days before or after the listing decisions on the major exchange. We
then calculate the fraction of these listings within this window [-100,100] and plot them in
Figure 4. In the first panel, the x-axis is the absolute distance of the exchange’s listing date
to Binance coin listing date and y-axis is the fraction of listings on other exchanges over
different windows.10 It shows that other exchanges’ coin listings occur exactly after the point
when Binance lists the corresponding coin, suggesting that other exchanges follow Binance’s
listing decisions. Specifically, approximately 15% of all listings in Binance’s listing before
and after 100-day window happen right within Binance’s listing after ten-day window.

[Figure 4 here]

In addition, we examine whether the structure of price correlations between exchanges
should have a core-periphery structure. In particular, we test whether price correlation
with the central exchange and listing following with the central exchange are positively
correlated across exchanges. To test this idea, we run a cross-sectional regression between
price correlation distance and listing following distance across exchanges to show whether
these two distance variables relative to the major exchanges are positively correlated. The
regression takes the following form:

PriceCorrelationDistancei = α + βListingFollowingDistancei + ϵi (18)

where i indexes exchange, and two variables are defined below. Our coefficient of interest, β,
indicates the correlation between these two distances. We expect a positive β, suggesting
that coin prices of exchanges following central exchange’s listings more closely will be more
correlated with coin prices of central exchanges.

These distance variables are constructed and defined as follows. We first calculate these
distance variables at coin and exchange pair level, meaning that there will be a distance
measure for every coin and every exchange pair. For example, the price correlation distance
of Bitcoin between Binance and one small exchange will be first calculated using the whole
available data, namely their overlapping price data. Then, these measures are aggregated at
the exchange pair level by averaging all measures for different coins on the same exchange
pair.

10We drop all Bitcoin and Ethereum listings and listings that happen on the same day as major exchange’s
listing
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The price correlation distance defined in Equation (19) is proportional to the square root
of the correlation distance 1 − ρ,where ρ is the price correlation. This measure ranges from 0
to 1. A smaller distance suggests a more positive price correlation. This metric satisfies all
distance properties and is widely used in statistics and other related fields.

Price Correlation Distancei,e1,e2 =
√

2(1 − ρi,e1,e2) (19)

where i, e1, e2 indexes coin, one of major exchanges (Binance, Coinbase), and another
exchange. ρ denotes the price correlation of coin i between the major exchange e1 and
another exchange e2.

The listing following distance is defined in Euqation (20). This distance transformation
guarantees that the listing following effect is properly measured. This measure ranges from 0
to 100. This measure is lowest when exchanges list coins right after the central exchange’s
listings. Listing before or after 100 days of central exchange’s listings will incur a large listing
following distance.

Listing Following Distancei,e1,e2 =


100, di,e1,e2 < 0

di,e1,e2, 0 ≤ di,e1,e2 ≤ 100

100, di,e1,e2 > 100

(20)

where d denotes the distance between coin i listing on another exchange e2 date and listing
on the major exchange e1 date.

After obtaining these two variables, the average price correlation distance and listing
following distance with 10 major exchanges across exchanges are calculated. We plot the
correlation between these two distances for all 10 major exchanges. Figure 5 shows that only
the correlation for Binance is positive and significant, suggesting those exchanges following
Binance’s listing decision will have a more significant positive price correlation with Binance.

[Figure 5 here]

Moreover, we examine whether the entry of a central exchange decreases volatility and
the dispersion of prices across peripheral exchanges. We first test this idea by looking at the
top 3 cryptocurrencies. Figure 6 plots the dispersion of prices around Binance’s listings. It
shows that a significant decrease in price dispersion after Binance’s listings. Also, we formally
test this idea using all the cryptocurrencies. The results, presented in Table 4, show that a
coin’s volatility, intra-day spread, and price dispersion on peripheral exchanges decrease after
it is listed on the central exchange.

[Figure 6 here]
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Finally, we examine whether peripheral exchanges that have stronger price correlations
with the central exchange have larger volume increases when the central exchange lists. We
test this idea by adding an interaction term (Listing × Correlation) to Equation (16). Table
5 presents the results. The coefficient on the interaction term is positive and significant,
suggesting that peripheral exchanges more correlated with the central exchange have a
stronger effect when the central exchange lists.

[Table 5 here]

Log(V olume)i,t = α+
30∑

τ=−30
βτListingi,τ+Correlationi,t+

30∑
τ=−30

βτListingi,τ∗Correlationi,t+δi+ηt+ϵi,t

(21)

5.1 Additional results and robustness

Prior studies show that there is a general listing effect of coin returns (e.g., Ante (2019);
Lemmen (2022)). We also examine whether the listing on core exchanges affects coins’
returns.The regression specification is similar to Equation (16), except the dependent variable
is coins’ returns. Table 6 reports the results of this test. The coefficient on Listing is negative
and significant, suggesting that the listing on core exchanges have a negative effect on coins
returns. This is consistent with the evidence in the existing literature. One concern is that
the result might be driven by the differences in countries where exchanges locate, such as
regulatry policies. To address the concern, we re-run the test at the coin-exchange level and
include country fixed-effects. Table 7 reports the results. Again, the coefficient on the Listing
is positive and significant, which is similar to the main results.

6 Conclusion

In this paper, we showed that there is a core-periphery structure to the strategic interactions
among cryptocurrency exchanges. A large number of small peripheral exchanges are comple-
mentary to a small number of deep and liquid core exchanges. Theoretically, we constructed
a model showing how core exchanges can be complementary to peripheral exchanges, by
providing a source of deep liquidity which can be accessed through inter-exchange arbitrage.
As a result, peripheral exchanges in fact experience increased trading volumes once core
exchanges list a token, and thus peripheral exchanges tend to follow the listing decisions of
core exchanges. We verify the model’s predictions empirically. From a positive perspective,
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our results help to address the question of why so many crypto exchanges coexist. From a
normative perspective, our results suggest that the proliferation of crypto exchanges may
result in consumers paying increased fees to peripheral exchanges, and inter-exchange arbi-
trageurs, to access central exchange liquidity. Our results also suggest that the large core
crypto exchanges are potentially systemically important players in crypto markets, since their
listing decisions tend to “lead” markets by inducing volume increases across other exchanges.
Policymakers may wish to consider monitoring or regulating the listing decisions of large
exchanges, given the large impact that these decisions have on crypto market outcomes.
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Figure 1: Market share of the top 5 exchanges for BTC trading over time

This figure shows the market share of the 5 largest exchanges across years of our dataset, for
BTC trading volume.
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Figure 2: Relative listing time ranking of coin for exchanges

It shows the relative listing time for top 10 exchanges. It plots the ranking, defined in
Equation (1).
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Figure 3: Flexible estimation of the listing effects on log volume by 5 days

This figure tests whether there is a pre-trend in volume for the DID test. It plots the estimates
of Equation (17) and their 95% confidence intervals.

−0.5

0.0

0.5

1.0

−20 0 20
Distance to listing day

C
oe

ffi
ci

en
ts

 o
n 

V
ol

um
e

Binance

−0.5

0.0

0.5

−20 0 20
Distance to listing day

C
oe

ffi
ci

en
ts

 o
n 

V
ol

um
e

Coinbase

−0.6

−0.3

0.0

0.3

0.6

−20 0 20
Distance to listing day

C
oe

ffi
ci

en
ts

 o
n 

V
ol

um
e

Pool: First Listing

26



Figure 4: Listing decisions for all exchanges around major exchange’s listing date

This figure shows the following pattern of all exchanges relative to the major exchange’s
listing. The x-axis denotes the time interval between an exchange’s listing date and a major
exchange’s listing date for the same coin. The red vertical line indicates zero time interval
with the major exchange listing. The y-axis is the density of each time interval bar. We drop
listings whose time interval with the major exchange’s listing is zero.
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Figure 5: Correlation-listing correlation for main exchanges

This figure displays the relationship between price correlation and listing distance of all
exchanges relative to major exchanges. This is a cross-sectional regression at the exchange
level, where the dependent variable is the price correlation between an exchange and a major
exchange, and the independent variable is the listing distance between an exchange and a
major exchange. β coefficient and its 95% confidence interval are reported.
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Figure 6: Price dispersion around Binance’s listing

This figure plots three coins’ price dispersion around Binance’s listing. The red vertical line
is the listing date of that coin on Binance.
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Table 1: Summary Statistics

This table presents summary statistics on variables related to coin outcomes, central exchange’s listings,
and other exchange’s distance to the central exchange. Panel A shows descriptive statistics for exchange’s
price correlation and listing following distance with regard to the top10 exchanges. Panel B summarizes the
coin-level coin outcomes and central exchange’s listings, Panel C shows the coin-exchange level variables. For
each variable, we show the number of non-missing observations, the mean, the standard deviation and the
10th, 50th and 90th percentile values.

Panel A: Exchange Level
Obs. Mean SD p10 p50 p90 Obs. Mean SD p10 p50 p90

BINANCE BINANCEUS
Price Correlation 252 0.7 0.2 0.4 0.8 1 211 0.7 0.2 0.4 0.8 1
Price Correlation Distance 252 0.7 0.3 0.3 0.7 1.1 211 0.6 0.3 0.2 0.6 1.1
Listing Following Distance 117 85.2 11.2 73.4 87.7 96.2 102 87.8 16.9 76.9 93.2 97.2

BITFINEX BITSTAMP
Price Correlation 253 0.7 0.2 0.4 0.8 1 253 0.7 0.2 0.4 0.8 1
Price Correlation Distance 253 0.7 0.3 0.3 0.6 1.1 253 0.7 0.3 0.3 0.6 1.1
Listing Following Distance 111 90.1 7.7 80.5 92.4 96.6 65 90 10.1 77.4 94.1 98.4

COINBASE FTX
Price Correlation 253 0.7 0.2 0.4 0.8 1 252 0.7 0.3 0.4 0.8 1
Price Correlation Distance 253 0.7 0.3 0.2 0.6 1.1 252 0.6 0.4 0.2 0.6 1.1
Listing Following Distance 113 86.5 9.3 78 88.2 95.3 117 84.4 11.5 73.2 85.4 96.5

GEMINI KRAKEN
Price Correlation 251 0.7 0.2 0.4 0.8 1 253 0.7 0.2 0.3 0.7 0.9
Price Correlation Distance 251 0.7 0.3 0.2 0.76 1.1 253 0.7 0.3 0.3 0.7 1.2
Listing Following Distance 97 84.7 14.2 68.3 88.6 95.7 97 91.2 5.5 86.5 91.9 97.0

KUCOIN OKEX
Price Correlation 242 0.7 0.2 0.4 0.8 0.9 242 0.7 0.2 0.4 0.8 1
Price Correlation Distance 242 0.7 0.3 0.3 0.6 1.1 242 0.7 0.3 0.3 0.7 1.1
Listing Following Distance 124 88.6 9.1 80.5 90.5 97.2 120 83.5 14.5 66.5 87 96.7
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Panel B: Coin Level
Obs. Mean SD p10 p50 p90

Log (Volume) 476518 14.37 4.34 8.94 15.02 18.96
Volatility 465823 0.02 0.17 0 0 0.01
Intra-day Spread 476398 0.13 0.16 0.03 0.09 0.25
Return 465823 0.01 0.13 -0.07 0 0.08
Listing Binance 476518 0.48 0.5 0 0 1
Listing Coinbase 476518 0.15 0.36 0 0 1
Listing Pool 476518 0.69 0.46 0 1 1

Panel C: Coin-Exchange Level

Obs. Mean SD p10 p50 p90

Return 5749870 0 0.1 -0.06 0 0.06
Log (Volume) 5763021 11.99 3.91 6.64 12.35 16.59
Listing Binance 5763021 0.83 0.37 0 1 1
Listing Coinbase 5763021 0.44 0.5 0 0 1
Listing Pool 5763021 0.91 0.29 1 1 1

Table 2: Coin volume and listing: DID estimates

This table presents the listing pumb effect excluding new entrants. We restrict our sample to
exchanges that list 30 days before the major exchange, aggregate the volume of these exchanges to
the coin level, and run regression as same as Equation (16). The dependent variable is logarithm of
trading volume. Columns (1) to (3) are results based on listings on Binance. Columns (4) to (6) are
results based on listings on Coinbase. Columns (7) to (9) are results based on listings on the pool
of top 10 exchanges. The reported t-statistics are based on robust standard errors. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels respectively.

Dependent Variables: Log (Volume)
Binance Coinbase Pool

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Listing 0.048*** 0.050*** 0.074*** 0.135*** 0.137*** 0.185*** 0.047*** 0.049*** 0.066***

(0.005) (0.005) (0.007) (0.004) (0.004) (0.006) (0.006) (0.006) (0.009)
Pre Three-day Listing 0.193*** 0.250*** 0.242*** 0.266*** 0.181*** 0.217***

(0.043) (0.041) (0.035) (0.033) (0.057) (0.056)
One-day Lag Log Volume 0.624*** 0.624*** 0.594*** 0.646*** 0.646*** 0.620*** 0.607*** 0.607*** 0.570***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Two-day Lag Log Volume 0.351*** 0.351*** 0.340*** 0.326*** 0.326*** 0.315*** 0.365*** 0.365*** 0.347***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Coin FE No No Yes No No Yes No No Yes
Day FE No No Yes No No Yes No No Yes
R2 0.932 0.932 0.937 0.948 0.948 0.953 0.921 0.921 0.927
Observations 214,846 214,846 214,307 293,729 293,729 293,193 161,054 161,054 160,497
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Table 3: Coin volume and listing: DID Balanced Panel estimates

This table presents the listing pumb effect excluding new entrants. We restrict our sample to
exchanges that list 30 days before the major exchange, aggregate the volume of these exchanges to
the coin level, and run regression as same as Equation (16). Columns (1) is result based on listings
on Binance. Columns (2) is result based on listings on Coinbase. Columns (3) is results based on
listings on the pool of top 10 exchanges. The reported t-statistics are based on robust standard
errors. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels respectively.

Dependent Variables: Log (Volume)
Model: Binance Coinbase Pool

(1) (2) (3)
Listing 0.012** 0.001 0.042***

(0.006) (0.006) (0.008)
Pre Three-day Listing 0.220*** 0.389*** 0.296***

(0.043) (0.044) (0.047)
One-day Lag Log Volume 0.601*** 0.615*** 0.572***

(0.002) (0.001) (0.002)
Two-day Lag Log Volume 0.338*** 0.328*** 0.349***

(0.002) (0.001) (0.002)
Coin FE Yes Yes Yes
Day FE Yes Yes Yes
R2 0.940 0.950 0.925
Observations 378,824 456,960 289,823

32



Table 4: Coin volatility and listing: DID estimates

The differential lisitng pump effect of volatility for different major exchanges. The regression model is
similar to that in Table 1. The pool here denotes the second listing for a specific coin. The reported
t-statistics are based on robust standard errors. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels respectively.

Dependent Variables: Volatility Intra-day Spread Dispersion
Model: Binance Coinbase Pool Binance Coinbase Pool Binance Coinbase Pool

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Listing -0.002*** -0.001*** -0.002*** -0.012*** -0.013*** -0.015*** -0.037*** 0.011*** -0.042***

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.002) (0.003) (0.002)
Pre Three-day Listing 0.001*** 0.002*** 0.001*** 0.029*** 0.050*** 0.027*** 0.004 0.007 0.031**

(0.000) (0.000) (0.000) (0.003) (0.003) (0.003) (0.012) (0.015) (0.012)
Coin FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.279 0.266 0.258 0.306 0.322 0.288 0.311 0.321 0.347
Observations 298,986 165,425 403,201 303,282 168,016 409,626 273,598 149,479 360,997
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Table 5: Coin volume, exchange correlation, and listing

This table presents the listing pumb effect excluding new entrants. We restrict our sample to
exchanges that list 30 days before the major exchange, and run regression as same as Equation (16)
at the exchange-coin-day level. The dependent variable is logarithm of trading volume. Columns (1)
to (2) are results based on listings on Binance. Columns (3) to (4) are results based on listings on
Coinbase. Columns (5) to (6) are results based on listings the pool of top 10 exchanges. The reported
t-statistics are based on robust standard errors. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels respectively.

Dependent Variables: Log Volume
Binance Coinbase Pool

(1) (2) (3) (4) (5) (6)
Listing 0.013*** -0.048*** 0.023*** -0.027*** 0.014** -0.199***

(0.004) (0.015) (0.003) (0.010) (0.006) (0.023)
Listing × Correlation 0.062*** 0.049*** 0.238***

(0.016) (0.012) (0.026)
Pre Three-day Listing 0.118*** 0.374*** 0.127*** 0.251** 0.115*** 0.231

(0.021) (0.132) (0.017) (0.114) (0.035) (0.206)
Pre Three-day Listing × Correlation -0.296** -0.144 -0.136

(0.148) (0.128) (0.236)
Correlation 0.574*** 0.446*** 0.684***

(0.013) (0.011) (0.021)
0.592*** 0.586*** 0.617*** 0.612*** 0.580*** 0.572***

One-day Lag Log Volume (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
0.366*** 0.359*** 0.354*** 0.349*** 0.366*** 0.358***

Two-day Lag Log Volume (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

Coin FE Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes
R2 0.916 0.917 0.934 0.934 0.909 0.910
Observations 835,336 835,159 3,170,428 3,170,251 375,952 375,798
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Table 6: Coin returns and listing: DID estimates

The differential lisitng pump effect of return for different major exchanges. The regression model is
similar to that in Table 1. The dependent variable is logarithm of trading volume. Columns (1)
to (3) are results based on listings on Binance. Columns (4) to (6) are results based on listings
on Coinbase. Columns (7) to (9) are results based on listings on FTX. Columns (10) to (12) are
results based on listings on the pool of these three exchanges. The reported t-statistics are based on
robust standard errors. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels
respectively.

Dependent Variables: Return
Binance Coinbase Pool

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Listing -0.006*** -0.006*** -0.005*** -0.003*** -0.003*** -0.003*** -0.009*** -0.009*** -0.007***

(0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001)
Pre Three-day Listing 0.023*** 0.024*** 0.034*** 0.042*** 0.023*** 0.025***

(0.004) (0.004) (0.005) (0.004) (0.003) (0.003)
Coin FE No No Yes No No Yes No No Yes
Day FE No No Yes No No Yes No No Yes
R2 0.00123 0.00128 0.09262 0.00046 0.00052 0.09247 0.00249 0.00256 0.09309
Observations 465,823 465,823 465,823 465,823 465,823 465,823 465,823 465,823 465,823
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Table 7: Coin volume, listing and country fixed effects

This table presents the listing pumb effect excluding new entrants. We restrict our sample to
exchanges that list 30 days before the major exchange, and run regression as same as Equation
(16) at the exchange-coin-day level. The dependent variable is logarithm of trading volume. The
dependent variable is logarithm of trading volume. Column (1) is result based on listings on Binance.
Column (2) is result based on listings on Coinbase. Column (3) is result based on listings the pool
of top 10 exchanges. The reported t-statistics are based on robust standard errors. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels respectively.

Dependent Variables: Log Volume
Binance Coinbase Pool

(1) (2) (3)
Listing 0.017*** 0.005* 0.025***

(0.004) (0.003) (0.006)
Pre Three-day Listing 0.122*** 0.124*** 0.124***

(0.021) (0.018) (0.035)
One-day Lag Log Volume 0.584*** 0.611*** 0.569***

(0.001) (0.001) (0.002)
Two-day Lag Log Volume 0.358*** 0.346*** 0.350***

(0.001) (0.001) (0.002)
Coin FE Yes Yes Yes
Day FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.917 0.933 0.912
Observations 780,259 2,884,134 364,253
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Appendix

A Supplementary Material for Section A

A.1 Logistics of International Remittances using Cryptocurrencies

As an extended example which illustrates the role of cryptocurrency exchanges in the usage
of crypto, we describe the process of transferring funds internationally using cryptocurrencies.
Suppose, for example, an individual in the USA who wished to transfer funds to a individual
in the Philippines using cryptocurrencies. Such a transfer would follow the following steps:

1. The US-based individual would deposit fiat, using a bank transfer or other means, into a
crypto exchange operating in the USA, and use these funds to purchase cryptocurrencies
custodied on the exchange.

2. The US-based individual would “withdraw” her crypto to her private blockchain wallet.

3. The US-based individual could then send her cryptocurrencies to the wallet address of
the individual in the Philippines.

4. The Philippines-based individual would “deposit” her crypto into a crypto exchange.

5. The Philippines-based individual would sell her crypto on the exchange for Philippines
fiat currency, and then withdraw this, using a bank transfer or other means, to regular
Philippines fiat currency.

The total fees charged in the course of this transaction include fees charged by exchanges
for depositing, trading, and withdrawing in steps 1, 2, 4, and 5, as well as transaction fees
charged for the blockchain transfer in step 3. The fees charged by exchanges vary. For the
largest exchange, Binance, deposits and withdrawals are free, and purchases are charged
around 0.1%, with discounts for very large trades and traders. Some smaller exchanges charge
higher fees. The crypto transfer in step 3 has fees ranging from fractions of a cent to a few
US dollars. Fees vary based on the degree of blockchain network congestion, but fees are
generally independent of the value of the transaction. These transfers thus have competitive
pricing, relative to some countries with inefficient traditional financial infrastructure.

An important benefit of crypto transfers is that they allow users to circumvent various
regulations, such as capital controls as well as know-your-customer and anti-money-laundering
provisions, imposed by national financial regulators. Crypto wallets are pieces of software
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or hardware, in which the security of funds is guaranteed through private-key cryptography.
Self-custodied cryptocurrencies are not stored with any trusted intermediary: rather, a
“private key” – a long numeric code, kept only on the user’s hardware device – is used to
prove to the blockchain network that the user owns her tokens, and to direct the network
to take actions such as transfer tokens to other wallets. Crypto “miners”, which build the
blockchain by inserting proposed transactions in new “blocks”, are incentivized to mine by
newly minted crypto tokens they are given, and transaction fees which are paid by users for
each transaction that they “mine”. Since miners have no access to individuals’ private keys,
they have no ability to take funds from individuals’ wallets.

It is logistically very difficult for regulators to enforce capital controls and other transfer
restrictions directly on crypto transfers at the blockchain level, that is, step 3. of the process
above. Firstly, there is no public mapping from addresses to individuals, so regulators cannot
easily tell who owns a wallet, or even what country a wallet’s owner resides in. Secondly, even
if regulators were able to identify a set of wallets to impose potential transfer limitations on,
enforcing transfer restrictions is difficult to to the structure of blockchain mining, because
transactions are processed by geographically dispersed miners in an essentially discretion-free
manner. Hypothetically, for example, if US-based Ethereum miners were instructed by US
regulators to stop processing transactions from certain wallets, these transactions would only
have to wait in the “mempool” of proposed transactions until a non-US miner not subject to
the restriction mined a block and included the transaction.11

Crypto exchanges play a critical role in the process of sending funds due to their role
in steps 1, 2, 4, and 5 of the funds transfer process. They serving as “on/off-ramps”, by
allowing deposits and withdrawals of crypto or fiat, and the trading of fiat for crypto. Since
on-blockchain crypto transfers cannot easily be restricted, regulators have instead focused on
imposing financial regulations through exchanges. For example, in the USA, a 2019 joint
statement by the CFTC, FinCEN, and the SEC announced that crypto exchanges were
classified as money services businesses, and thus are subject to KYC and AML rules under
the Bank Secrecy Act of 1970. US-based crypto exchanges thus must gather identifying
information about their customers to comply with these requirements. Crypto exchanges in
many other countries with strict financial regulations are subject to similar requirements.

11One class of exceptions to this rule is that the administrators of certain tokens, such as the Circle (USDC)
and Tether (USDT) USD stablecoins, include code in the “smart contracts” governing their tokens which
allows them to freeze the funds of certain “blacklisted” wallets. These token administrators cooperate with
regulators to freeze the funds of wallet addresses identified as being involved in hacks or other criminal
activity. See, for example, Coindesk and Cointelegraph. However, freezing funds is only possible if, at the
creation of the token, administrators include the capability to blacklist tokens, and the majority of crypto
tokens do not have built-in blacklist functionality.
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There are other ways to exchange fiat for cryptocurrencies besides custodial crypto
exchanges. Users can simply exchange cryptocurrencies for fiat informally in social networks.
Peer-to-peer exchanges, such as LocalBitcoins, also exist, which pair buyers and sellers of
crypto in a manner that does not involve exchange custody of assets. Various institutions
existing in legal gray areas also offer to exchange fiat for crypto across countries; for example,
black market exchanges in Argentina allow individuals to exchange Argentinian pesos for
USD, as well as various cryptocurrencies.12

B Proofs

B.1 Proof of Proposition 1

Prices. When the CEX does not list the token, arbitrageurs have no activity. Market
clearing requires aggregate demand from all users on exchange j to equal 0. Hence, from (4),
we need:

Zuser,j (pj) =
� ∞

−∞
zi (x) dFxi,0 (x) = −γj

γj + τj
ηj + ψ − pj

γj + τj
= 0

Solving for pj, we have:
p∗
j,0 = ψ − γjηj (22)

This is (6).

Trade quantities. To solve for expected squared trade quantity, note that user i’s trade
quantity is (3). Plugging in for ψ − pj using (22), we have:

z∗
i,0 = −γj

γj + τj
xi,0 + γjηj

γj + τj

Thus, we have:

E
[
z∗2
i,0

]
=

� ∞

−∞

(
−γj
γj + τj

xi,0 +
ψ − p∗

j0

γj + τj

)2

dFxi,0 (x)

Plugging in for p∗
j0 using (22) and simplifying, we have:

=
(

γj
γj + τj

)2 � ∞

−∞
(ηj − xi,0)2 dFxi,0 (x)

=
(

γj
γj + τj

)2

σ2
I,j

12See Devon Zuegel.
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Exchange profits. The exchange’s profit from user i is simply τj

2 z
2
i ; hence, the exchange’s

profit over all users is:

π∗
j,0 =

� ∞

−∞

τj
2 z

∗2
i (x) dFxi,0 (x) = τj

2

(
γj

γj + τj

)2

σ2
I,j

B.2 Proof of Proposition 2

Prices. When the CEX lists the token, arbitrageurs can trade the risky asset on j as well
as the central exchange. Market clearing requires aggregate demand from all users and
arbitrageurs on exchange j to equal 0. Hence, from (4) and (5), we need:

Zuser,j (pj) + Zarb,j (pj) =
(

−γj
γj + τj

ηj + ψ − pj
γj + τj

)
+ ψ − pj
ζj + τj

= 0

Solving for pj, we have:
p∗
j,1 = ψ − ζj + τj

γj + ζj + 2τj
γjηj (23)

This is (9).

Trade quantities. To solve for expected squared trade quantity, note that user i’s trade
quantity is (3). Plugging in for ψ − pj using (23), we have:

z∗
i1 = −γj

γj + τj
xi,0 + ζj + τj

γj + ζj + 2τj
γjηj
γj + τj

Taking the expectation over all users, we have:

E
[
z∗2
i1

]
=

� ∞

−∞

(
−γj
γj + τj

xi,0 +
ψ − p∗

j,1

γj + τj

)2

dFxi,0 (x)

Plugging in for prices using (23), we have: Algebra:

=
� ∞

−∞

 −γj
γj + τj

xi,0 +
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(
ψ − ζj+τj

γj+ζj+2τj
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)
γj + τj

2

dFxi,0 (x)

=
(

γj
γj + τj
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−∞

(
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=
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=
(

γj
γj + τj

)2
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j

)
− 2 ζj + τj
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Exchange profits. The exchange’s profit from user i is simply τj

2 z
2
i ; hence, the exchange’s

profit over all users is:
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B.3 Proof of Proposition 3

Here we assume the aggregate inventory shock at peripheral exchange ηj is independent of the
efficient price ψ and aggregate inventory shock at other peripheral exchanges. The coefficient
of determination R2 between the central exchange’s price, and peripheral exchange j’s price,
is:

R2
j,CE =

Cov2
(
p∗
j , ψ

)
V ar

(
p∗
j

)
V ar (ψ)

=
Cov2

(
ψ − ζj+τj

γj+ζj+2τj
γjηj, ψ

)
V ar

(
ψ − ζj+τj

γj+ζj+2τj
γjηj

)
V ar (ψ)

= Cov2 (ψ, ψ)[
V ar (ψ) + V ar

(
− ζj+τj

γj+ζj+2τj
γjηj

)]
V ar (ψ)

=
σ2
ψ

σ2
ψ +

(
ζj+τj

γj+ζj+2τj

)2
γ2
jσ

2
A,j

(24)

The R2 between the prices of exchanges j and j′ is:
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R2
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(25)

The R2 between the prices of exchanges j and j′ is simply the product of the R2 between the
prices of exchanges j and the central exchange, and the R2 between the prices of exchanges
j′ and the central exchange. Therefore, we always have:

R2
j,CE ≥ R2

j,j′

B.4 Proof of Prediction 5

The prediction that the correlation between the central exchange’s price and peripheral
exchange j’s price is decreasing in the arbitrage costs ζj follows directly from (24):

∂R2
j,CE

∂ζj
=

−2σ2
ψσ

2
A,jγ

2
j (ζj + τj) (γj + τj)[

σ2
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(
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γj+ζj+2τj

)2
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jσ

2
A,j

]2
(γj + ζj + 2τj)3

≤ 0 (26)

The volume increase of peripheral exchanges after the central exchange lists is defined as:

∆E
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(27)
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The volume increase of peripheral exchanges is also decreasing in the arbitrage costs ζj from
(27):

∂∆E
[
z∗2
i,1

]
∂ζj

= − 2(γj + τj)2

(γj + ζj + 2τj)3

(
ηj
σI,j

)2

≤ 0 (28)

Similarily, the exchange’s profit from user i is simply τj

2 z
2
i . Therefore, the profits increase of

peripheral exchanges is also decreasing in the arbitrage costs ζj.

C Details of Data Cleaning

This part introduces our data cleaning process. The raw dataset is at the hourly trade-pair
level. There are mainly four steps:

1. Aggregate the data at the daily level for each coin at each exchange.

2. Keep trade-pairs if both coins belong to the top 500 coins ranked by CoinMarketCap.com.

3. Since the prices in the raw dataset are denominated in the second coin of the trade-
pair, we first construct coin price conversion series. Conversion prices are same across
exchanges. For example, trade-pair

4. We split each trade-pair level observation into two coin level observations. The prices
of the coin level data are converted, respectively.

5. We aggregate the previous data by exchanges and coins.

6. We aggregate the data by coins.

Finally, for each coin listed on exchanges, we can observe daily prices and volume. For most
analysis, we focus on coin-level data. For some analysis, we use data at coin-exchange level
from step 5.

D Additional Empirical Results

We also test the validity of parallel trend for the returns listing effects in Figure A.1. The flexi-
ble estimation also shows that the dynamic listing effects of returns for major exchanges are sim-
ilar. [Figure A.1 here]
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Figure A.1: Flexible estimation of the listing effects on returns by 5 days

This figure tests whether there is a pre-trend in returns for the DID test. It plots the
estimates of Equation (17) and their 95% confidence intervals.
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