
Stripping the Discount Curve—a Robust Machine Learning

Approach∗
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Abstract
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which is straightforward and fast to implement. We show in an extensive empirical study on

U.S. Treasury securities, that our method strongly dominates all parametric and non-parametric

benchmarks. Our method achieves substantially smaller out-of-sample yield and pricing errors,

while being robust to outliers and data selection choices. We attribute the superior performance

to the optimal trade-off between flexibility and smoothness, which positions our method as the
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†École Polytechnique Fédérale de Lausanne and Swiss Finance Institute, Email: damir.filipovic@epfl.ch
‡Stanford University, Department of Management Science & Engineering, Email: mpelger@stanford.edu.
§Stanford University, Department of Management Science & Engineering, Email: yeye@stanford.edu.



1 Introduction

The yield curve of U.S. Treasury securities is one of the most fundamental economic quantities and

critical data sets for macroeconomic and financial research and applications. The yield curve, or

equivalently discount curve, is an important state variable for economists, traders, asset managers,

central banks, and financial-markets regulators. Precise and robust yield estimates are needed for

trading and making investment decisions, studying the term structure, predicting bond returns,

analyzing monetary policy, and pricing assets, derivatives and liabilities. However, the yield curve

is unobserved and needs to be inferred from a relatively sparse set of noisy prices of Treasury

securities. The quality of the yield curve estimate directly impacts the quality of the output of

applications that build up on it.

We introduce a robust, flexible, and easy-to-implement method, which sets the new standard for

yield curve estimation. We show in an extensive empirical study that it uniformly dominates exist-

ing benchmarks in terms of out-of-sample yield and pricing errors. Our non-parametric estimator

can explain complex yield curve shapes. It admits a closed-form solution as a simple kernel-ridge

regression, which is straightforward and fast to implement. It is robust to outliers and data selection

choices. We attribute the superior performance of our estimator to the optimal trade-off between

flexibility and smoothness of the curve. We provide a publicly available and regularly updated data

set of daily zero-coupon Treasury yields based on our precise estimates.1

Our approach imposes minimal assumptions on the true underlying yield curve, using only

the core elements that define the estimation problem. We trade off pricing errors against an

economically motivated smoothness reward of the discount curve. Setting up the objective function

in terms of the aggregated pricing error and a smoothness measures uniquely determines the optimal

basis functions that span the discount curve. In contrast to existing methods, we do not pre-

select any potentially misspecified functional form or ad-hoc non-parametric basis functions. Our

perspective is different from the conventional approach of first postulating a model and then making

inferences. We show that most existing models for estimating the discount curve are nested within

our framework by imposing additional ad-hoc assumptions. Our framework is also consistent with

arbitrage-free dynamic term structure models, in the sense that it contains all discount curves that

are generated by stochastic models of the Heath, Jarrow, and Morton (1992) type.

Our approach is a machine learning solution that is tailored to the problem and leverages its

economic structure. We provide the theoretical foundation for our machine learning estimator based

on insights in functional analysis. Our method optimally learns basis functions in reproducing

kernel Hilbert spaces. The estimator of the discount curve is given in closed form by a simple

regression on the kernel basis functions with a ridge penalty, which rewards smoothness of the

discount curve. The smoothness parameter is chosen by cross-validation such that the estimated

discount curve attains the lowest out-of-sample pricing error. The interpretability and generality of

our estimator allows us to learn from the data the key features of the underlying yield curve. Our

1Our estimated yields of zero-coupon Treasuries at daily and monthly frequency are available at https://doi.

org/10.5281/zenodo.6345532.
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method naturally lends itself to a Bayesian interpretation. This perspective gives a distribution

theory and implies confidence intervals for the estimated discount curve, yields and implied fixed

income security prices.

The literature on yield curve estimation can essentially be divided into two categories: paramet-

ric and non-parametric methods. The most important examples in the first category are Nelson and

Siegel (1987), Svensson (1994), and Gürkaynak, Sack, and Wright (2007). These methods assume

smooth parametric forms for the yield curve, and parameters are estimated by minimizing pricing

errors. The most prominent benchmarks in the non-parametric category include Fama and Bliss

(1987) and Liu and Wu (2021). Non-parametric methods tend to be more flexible than parametric

ones and have the potential to capture local as well as global variations in the yield curve. However,

they come not entirely without assumptions, some of which could be rather unrealistic or restric-

tive. For example, Fama and Bliss (1987) assumes that the forward curve is piece-wise constant,

while in Liu and Wu (2021), the price of a zero-coupon bond is given by a weighted average of first-

order Taylor expansions of the yield curve at monthly spaced knots. Such ad-hoc assumptions can

lead to overfitting and dynamic instability. Our approach falls into the non-parametric category,

but comes with minimal assumptions and an optimal tradeoff between flexibility and smoothness,

which prevents overfitting and ensures robustness.

We perform an extensive empirical study on U.S. Treasury securities from 1961 to 2020. We

find that our method strongly dominates the leading parametric and non-parametric benchmarks,

including Gürkaynak, Sack, andWright (2007), Fama and Bliss (1987) and our own implementations

of Svensson (1994) and Liu and Wu (2021). Our method achieves substantially smaller yield and

pricing errors, both in- and out-of-sample, and for all maturity ranges. We confirm that the

parametric benchmark models are misspecified. In contrast to the non-parametric benchmarks,

our estimator is robust to outliers and stable over time. This also makes it the tool of choice

to filter outliers from the data. In fact, our estimated discount curves are at the same time the

most precise and smoothest curves. We attribute this property to the optimal trade-off between

flexibility and smoothness.

The basis functions of our estimator, which span the cross-section of discount bonds, have a

clear economic interpretation. These basis functions are not selected ad-hoc, but are determined by

the problem and optimally selected from the data. Their shapes reflect the patterns of level, slope,

curvature and polynomials of increasing higher order. The smoothness reward optimally controls

the degree of curvature by selecting the weights on higher order polynomials. The fact, that the

leading principal components of a panel of discount bonds exhibit the same shape patterns, is

simply the consequence that these are the optimal basis functions for spanning the discount curve.

We discuss the limitations of non-parametric estimators for extrapolating yield curves beyond

the observed maturities. Extrapolation requires extra assumptions on the extrapolation region,

either in the form of imposed functional restrictions, or by an exogenous choice of some parameters

for more flexible models. The advantage of our method is that the only exogenous choice parameter

needed for the extrapolation has a clear economic interpretation as the infinite-maturity yield. Our
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confidence intervals confirm the large uncertainty that is associated with the extrapolation.

Our approach and findings are of relevance for many research questions in economics and finance.

The actual economic implications of selecting a specific yield curve estimator depend on the type

of application. The economic implications of using a non-parametric versus using a parametric

estimator are the most pronounced and visible in many applications. Parametric estimators distort

short and long term yields and their dynamics. This affects forecasting regression and asset pricing

results. The differences between non-parametric estimators are more subtle and more pronounced

for noisy and sparse data. Hence, the economic implications are the largest for low quality data,

for example for less liquid sovereign bond markets, or applications that require precise dynamics of

yields, for example for higher order yield factors.

Our paper makes several methodological and empirical contributions. First, we leverage repro-

ducing kernel Hilbert spaces with a smoothness trade-off for the yield curve estimation. By doing so

we deduce the structure of the solution from core principles, defined by the nature of the problem.

This is in contrast to the conventional other way around. Second, we provide the general theory

behind our machine learning estimator, which results in a simple, transparent and closed-form so-

lution and confidence intervals. Third, we perform one of the most extensive empirical comparison

studies of yield curve estimation models. As part of it, we develop a new protocol in terms of how

to compare and evaluate different models. We show how the benchmark yield curve estimators

differ from each other, and we find that our estimator outperforms them in all dimensions. Fourth,

we provide a new zero-coupon Treasury yield curve data set that overcomes the limitations of the

popular data sets of Fama and Bliss (1987) and Gürkaynak, Sack, and Wright (2007) and improves

upon the data set of Liu and Wu (2021). Our data set provides the most precise zero-coupon

Treasury yield estimates for all maturity ranges while being robust to data selection choices.

The paper is organized as follows. In Section 2, we formulate the fundamental problem of

estimating the discount curve based on the core principles of trading-off pricing errors and smooth-

ness and develop the theory for our estimation approach. In Section 3, we perform an extensive

empirical analysis and comparison study. In Section 4, we conclude. In the appendix, we provide

the theoretical background and all proofs of our main results. We also collect additional empirical

results, and provide a simulation study.

2 Estimating the Discount Curve

We first formulate the fundamental problem of estimating the discount curve. We then provide the

general solution to this problem as a kernel-ridge regression, and we show that most existent models

are nested within our framework. We also give a Bayesian perspective along with a distribution

theory.
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2.1 Fundamental Problem

The discount curve represents the fundamental values g(x) of zero-coupon Treasury bonds as a

function of their time to maturity x. The discount curve is a key economic state variable, which

allows to price any fixed income security that generates a risk-less cash flow. As the collection of

possible maturities includes essentially any future day, we represent the discount curve as a function

g : [0,∞) → R. Equivalent expressions are the zero-coupon yield curve y(x) = − 1
x log g(x) and

forward curve f(x) = −g′(x)
g(x) .

2

The full discount curve is not observed and has to be estimated from the relatively sparse set of

traded securities with noisy prices. Any estimation of the discount curve combines two elements:

the law of one price and some form of regularization. Formally, we observe the prices of P1, . . . , PM

of M coupon bonds with cash flows summarized in the M × N matrix C. This means that Cij

denotes the cash flow of security i at date xj , for a common set of cash flow dates 0 < x1 < · · · < xN .

The law of one price implies that the fundamental value of security i is equal to

P g
i =

N∑
j=1

Cijg(xj).

In other words, we can represent any coupon bond as a portfolio of zero-coupon bonds, where the

cash flows denote the portfolio weights. Absent arbitrage this portfolio has the same price as the

security. Due to market imperfections,3 observed prices Pi deviate from the fundamental values

P g
i , resulting in pricing errors ϵi,

Pi = P g
i + ϵi. (1)

The natural starting point to estimate the unknown discount curve g would be to minimize the

weighted mean squared pricing errors of the observed securities

min
g

{ M∑
i=1

ωi (Pi − P g
i )

2
}

for some exogenous weights ωi. However, the number of observed prices M is substantially smaller

than the number of maturity dates N . For example, on a typical trading day we observe around

M ≈ 300 different Treasury bond prices, while a discount curve for 30 years requires estimates of

around N ≈ 10,000 daily zero-coupon bond prices. Therefore, any estimation approach for the

discount curve imposes regularizing assumptions to limit the number of parameters that have to

be estimated. All of these assumption restrict the class of potential discount curves either in terms

of their functional form or their smoothness properties. Various approaches have been proposed in

the literature. The most popular methods impose some ad-hoc parametric form on the discount

curve, which we show empirically to be misspecified and hence to lead to spurious pricing errors.

2We write g′ for the derivative of g. The corresponding expressions for the discount curve are g(x) = e−y(x)x and
g(x) = e−

∫ x
0 f(t) dt.

3Market imperfections stands for the lack of a deep, liquid, and transparent market, as well as for data errors.
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More flexible methods impose either explicitly or implicitly assumptions on the desired smoothness

of the discount curve.

The fundamental problem of estimating the discount curve is a trade-off between minimizing

pricing errors of observed prices and rewarding its smoothness. We formulate the problem based

on only these core principles. The smoothness of the discount curve is guided by economic first

principles. Indeed, large sudden changes along the discount curve imply dynamic risk-free trading

strategies with extreme payoffs. Hence, limits to arbitrage require a sufficiently smooth curve. A

general measure of smoothness is given by the weighted average of the first and second derivatives

of g:

∥g∥α,δ =
(∫ ∞

0

(
δg′(x)2 + (1− δ)g′′(x)2

)
eαx dx

) 1
2

, (2)

for some maturity weight α ≥ 0 and shape parameter δ ∈ [0, 1].4 This measure encompasses the

conventional tension and curvature measures for curves. Penalizing g′(x)2 avoids oscillations, hence

forcing the curve g to be tense, while penalizing g′′(x)2 avoids kinks, enforcing the curve g to be

straight. The tension parameter δ balances between these two forces, while the weight function eαx

allows the smoothness measure to be maturity-dependent.5 While keeping the framework general,

we will select these parameter values optimally from the data as discussed later.

We study the extremely large space of discount curves given by the set Gα,δ of twice differentiable

functions g : [0,∞) → R with g(0) = 1 and finite smoothness measure (2).6 Hence, our approach

is fully flexible non-parametric. As we will show, essentially any existing method is a special case

by imposing either ad-hoc assumptions on the functional form or the smoothness requirements.

The fundamental estimation problem trades off the weighted mean squared pricing error against

the smoothness of g as expressed by the optimization problem

min
g∈Gα,δ

{ M∑
i=1

ωi(Pi − P g
i )

2

︸ ︷︷ ︸
pricing error

+λ ∥g∥2α,δ︸ ︷︷ ︸
smoothness

}
, (3)

for some smoothness parameter λ > 0. Increasing the smoothness parameter has has three effects.

First, it enforces smoothness by reducing excessive oscillations and curvature of the estimated

function. Second, it regularizes the problem as intuitively a smooth curve can be described by

4For technical reasons explained in Remark 3, we assume that (α, δ) ̸= (0, 0).
5This allows for greater pricing flexibility at shorter maturities, while enforcing a smooth long end, as suggested

by Bliss (1996).
6Technically speaking, we assume that g is differentiable of the form g(x) = 1 +

∫ x

0
g′(t) dt with absolutely

continuous derivative, g′(x) = g′(0) +
∫ x

0
g′′(t) dt, for Lebesgue integrable g′′, and that limx→∞ g′(x) = 0. If δ = 1,

we only assume that g′ is Lebesgue integrable. The requirement that g(0) = 1 is self evident. Note that any given
twice continuously differentiable function g on a finite interval, say [0, xN ], with g(0) = 1 can be extended to [0,∞)
such that g ∈ Gα,δ. Indeed, let g̃′ be any C1-extension of g′ on [0,∞), e.g., by setting g̃′ = g′ on [0, xN ] and
g̃′(x) = g′(xN ) + g′′(xN )(x − xN ) for x > xN . Let ψ be a C1-function with ψ = 1 on [0, xN ] and ψ(x) = 0 for
x > 2xN . Then g(x) = 1 +

∫ x

0
ψ(t)g̃′(t) dt is C2 on [0,∞) with g′(x) = g′′(x) = 0 for x > 2xN , and hence g ∈ Gα,δ

as desired. In Lemma 1, noting (24), we show that for fixed exponent α > 0 the set Gα,δ is invariant for varying
δ ∈ [0, 1), while for fixed δ ∈ [0, 1] we have the inclusion Gα,δ ⊂ Gα̃,δ if α̃ < α. See also Remark 2.
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fewer parameters (we formalize this aspect later). Third, it leads to more robust estimates by

penalizing outliers that lead to deviations. The conceptual problem is completely determined up to

the three parameters α, δ, λ, which we select empirically via cross-validation to minimize pricing

errors out-of-sample. We follow the standard approach in the literature for the pricing error weights

ωi by setting them inversely proportional to the squared duration Di of security i, that is

ωi =
1

M

1

(DiPi)2
. (4)

Hence, the weighted mean squared pricing error in (3) equals approximately the mean squared yield

fitting error,
M∑
i=1

ωi(Pi − P g
i )

2 ≈ 1

M

M∑
i=1

(Yi − Y g
i )

2,

where Yi and Y
g
i denote the yields to maturity of security i, corresponding to the observed price

Pi and fundamental value P g
i , respectively. This is the same choice as for example in Gürkaynak,

Sack, and Wright (2007) and discussed in more detail in Appendix A.6.1.

2.2 General Solution

We provide a simple closed-form solution to the general problem, which is easy to implement. Our

perspective is different from the usual approach to estimation, which would specify an ad-hoc set of

basis functions for a non-parametric estimation or a class of pre-specified functions for parametric

estimation, and after solving the corresponding optimization problem studies the properties of the

solution. We reverse the order, by first defining the conceptual problem and the properties of

the solution. The solution to the problem implies the optimal choice of basis functions for the

non-parametric estimation.

Our solution builds on insights in functional analysis and machine learning by leveraging the

structure of reproducing kernel Hilbert spaces (RKHS). Reproducing kernel Hilbert spaces are

particularly important in machine learning because of the celebrated representer theorem, which

states that every function in an RKHS that minimizes an empirical objective function can be written

as a linear combination of the reproducing kernel evaluated at the training points. This is crucial

as it effectively simplifies an infinite dimensional optimization problem to a finite dimensional one.

This means by setting up the objective function (pricing error and smoothness measure) and space

of functions (twice differentiable), the representer theorem uniquely pins down the basis functions

to solve the non-parametric problem. The solution is linear in these basis functions and boils down

to a simple regression. We recap the definition of a RKHS and provide some references for more

background and applications in Appendix A.1.

Theorem 1 gives the highly tractable solution to the fundamental problem (3). It boils down

to a kernel ridge regression (KR) that admits a closed-form solution, which is straightforward and

fast to implement. Our smoothness measure, which is a norm of functions, induces a specific kernel

function along with its RKHS. The representer theorem then applies accordingly. Henceforth, we

6



stack the prices into the column vector P = (P1, . . . , PM )⊤, and we write 1 for the column vector

consisting of 1s. For any two numbers a, b, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}.

Theorem 1 (Kernel-Ridge (KR) Solution)

The fundamental problem (3) has the unique solution ĝ, given in closed form by

ĝ(x) = 1 +
N∑
j=1

k(x, xj)βj , (5)

where β = (β1, . . . , βN )⊤ is given by

β = C⊤(CKC⊤ + Λ)−1(P − C1), (6)

for the N ×N -kernel matrix Kij = k(xi, xj), and Λ = diag(λ/ω1, . . . , λ/ωM ). The kernel function

k : [0,∞)× [0,∞) → R is given in closed form according to the five cases:

(i) α = 0, δ ∈ (0, 1):

k(x, y) =
1

δ
(x ∧ y) + 1

2δρ

(
e−ρ(x+y) − eρ(x∧y)−ρ(x∨y)

)
(7)

where we define ρ =
√
δ/(1− δ);

(ii) α = 0, δ = 1:

k(x, y) = x ∧ y; (8)

(iii) α > 0, δ = 0:

k(x, y) = −x ∧ y
α2

e−α(x∧y) +
2

α3

(
1− e−α(x∧y)

)
− x ∧ y

α2
e−α(x∨y); (9)

(iv) α > 0, δ ∈ (0, 1):

k(x, y) = − α

δℓ22

(
1− e−ℓ2x − e−ℓ2y

)
+

1

αδ

(
1− e−α(x∧y)

)
+

1

δ
√
D

(
ℓ21
ℓ22
e−ℓ2(x+y) − e−ℓ1(x∧y)−ℓ2(x∨y)

) (10)

where we define D = α2 + 4δ/(1− δ), ℓ1 =
α−

√
D

2 , and ℓ2 =
α+

√
D

2 ;

(v) α > 0, δ = 1:

k(x, y) =
1

α

(
1− e−α(x∧y)

)
. (11)

The case (α, δ) = (0, 0) is not specified.

The basis functions k(·, xj), that span the discount curve (5) in our non-parametric problem,

are determined by the smoothness measure. Hence, the kernel selection is completely guided by the
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economic principle of a smooth discount curve with measure (2), and the parameters of the optimal

basis functions are learned from the market data. This is distinctively different from conventional

kernel-smoothing methods in the literature, which select the kernel exogenously.

As the solution of a kernel ridge regression, the estimated discount curve (5) becomes linear in

the observed prices. Hence, while the underlying problem itself is non-linear, it is translated into a

linear problem in the kernel space. The solution is straightforward and fast to implement. The main

computational task in (6) boils down to a left matrix division in dimension M , and a few matrix

multiplications, which results in an overall computational complexity of order O(M3 +MN2).

The discount bonds in (5) are replicated by a portfolio of observed coupon bonds and a cash

investment. This aspect is of independent interest as it allows to create synthetic discount bonds

of any desired maturity given the set of traded bonds. The portfolio weights for these synthetic

discount bonds depend on the smoothness controlled by λ. These synthetic discount bonds can be

used among others for term structure asset pricing or to immunize an obligation against interest

rate changes by matching the obligation’s cash flows.

The ridge regression imposes sparsity of β, in the sense that only those components βj are

non-zero, which correspond to actual cash flow dates xj . For a horizon of 30 years to maturity

with daily cash flows, N is of the order 10,000. However, the matrix C for most coupon bonds is

usually sparse. Indeed, with semi-annual coupon payments most columns of the cash flow matrix

C are zero. Consequently, the corresponding components of β in Equation (6) are zero, too.

The smoothness parameter λ controls the ridge shrinkage. Larger shrinkage increases the rel-

ative importance of the dominant eigenvectors of the kernel space projected on the cash flows.

As we will show in our empirical analysis, the dominant principal components of the kernel space

are associated with lower order polynomial-type functions that capture level, slope and curvature

shapes. Hence, shrinkage reduces the dimensionality of the parameter space by putting most weight

on these basis patterns.

Appendix A provides the general functional analytic theory and proofs. While Theorem 1 is

formulated for finite maturities, we show in Appendix A.5 that under minimal technical assumptions

it generalizes to infinite maturity and to functions that are only once differentiable (corresponding

to δ = 1). Importantly, we show that the parameter α corresponds to the yield of an infinite-

maturity zero-coupon bond and hence has a clear economic interpretation. We also show that a

model that finds the smoothest twice differentiable curve that prices all observed prices exactly is

included as a special case with vanishing smoothness parameter, Λ = 0. We emphasize that, while

our solution itself is simple, the underlying concepts and derivations are non-trivial.

2.3 Special Cases

Most existent models for estimating the discount curve are nested within our framework. Each of

the existing models imposes specific additional assumptions in our general framework. Hence, if

those assumptions and models were correct, we would recover them in our estimation. However,

including all of these methods discussed below as benchmarks in our empirical analysis, we show
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that their restrictive ad-hoc assumptions are rejected by the data.

Fama–Bliss:

The discount curve and implied discount portfolios of Fama and Bliss (1987) are widely used in

academic research. Fama and Bliss (1987) propose a non-parametric estimator, which assumes a

piece-wise constant forward curve with finitely many steps, that is fFB(t) = fi for t ∈ [ti, ti+1)

for i = 0, . . . ,m with 0 = t0 < · · · < tm < tm+1 = ∞. This results in the discount curve

gFB(x) = e−
∫ x
0 fFB(t) dt.

Nelson–Siegel–Svensson:

A widely used parametric method to estimate the discount curve is due to Nelson and Siegel (1987)

and Svensson (1994). The Nelson–Siegel–Svensson (NSS) forward curve is parametrized as

fNSS(x) = γ0 + γ1e
− x

τ1 + γ2
x

τ1
e
− x

τ1 + γ3
x

τ2
e
− x

τ2

for the parameters γ0, γ1, γ2, γ3 and τ1, τ2 > 0. This results in the discount curve gNSS(x) =

e−
∫ x
0 fNSS(t) dt. Gürkaynak, Sack, and Wright (2007) is a specific implementation of the Nelson-

Siegel-Svensson model, which we also include in our empirical study.

Smith–Wilson:

Smith and Wilson (2001) has been the insurance industry standard in Europe for construct-

ing the discount curve used in the regulatory Solvency II framework.7 Smith–Wilson consider

discount curves of the form gSW (x) = e−y∞xg0(x), for some g0 ∈ G0,δ with δ ∈ (0, 1), and

y∞ = log(1 + UFR) > 0, for the so-called ultimate forward rate UFR > 0.8 The Smith–Wilson

method assumes exact pricing of all bonds up to a certain maturity xN < ∞, which is also called

the last liquid point, and disregards all bonds with larger maturity. This is just a special case of

our main Theorem 1 with vanishing smoothness parameter, Λ = 0.9

Theorem 2 states that all of the above models are special cases of our framework.

Theorem 2 (Special cases)

The Fama–Bliss, NSS and Smith–Wilson discount curves are special cases of our framework for

specific parameter choices:

(i) The Fama–Bliss curve gFB lies in Gα,δ for any α ∈ [0, 2fm) and δ = 1;

(ii) The NSS curve gNSS lies in Gα,δ for any α ∈ [0, 2γ0) and δ ∈ [0, 1];

7See the technical documentation of the European Insurance and Occupational Pensions Authority EIOPA (2020),
and also Lager̊as and Lindholm (2016) and Viehmann (2019).

8Smith and Wilson (2001) define the kernel W (x, y) = e−y∞(x+y)δρk(x, y), which is also known as Wilson func-
tion, where k(x, y) is the kernel given in (7). In view of Lemma 2, such discount curves extend well to infinity,
limx→∞ gSW (x) = 0. We discuss this property in more generality in Appendix A.5.

9See Theorem A.1 for the technical details.
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(iii) The Smith–Wilson curve gSW lies in Gα,δ for any α ∈ [0, 2y∞) and δ ∈ [0, 1].

In Appendix A.3.3 we show that our framework is also consistent with arbitrage-free dynamic

term structure models, in the sense that it contains all discount curves that are generated by

stochastic models of the Heath, Jarrow, and Morton (1992) type. Other nested approaches also

include Tanggaard (1997) and Filipović and Willems (2018).10 In contrast, the following model is

not nested.

Liu–Wu:

Liu and Wu (2021) propose a non-parametric estimator that constructs discount curves by combin-

ing a normal kernel-smoothing method with a special bandwidth selection. This results in discount

curves of the form

gLW (x) =

∑360
n=1Kh(x)(n− x) exp (−(yn + (x− n)y′n)x)∑360

n=1Kh(x)(n− x)

for the normal kernel-weighting function

Kh(x)(n− x) =
1√

2πh(x)2
exp

(
−(n− x)2

2h(x)2

)

with bandwidth h(x).11 The Liu–Wu discount curve gLW (x) can be interpreted as a local kernel-

smoothing mixture of auxiliary discount curves, exp (−(yn + (x− n)y′n)x). The parameters (yn, y
′
n)

are found by minimizing a kernel-weighted mean squared pricing error, which is a non-convex

optimization problem. The bandwidth h(x) depends on the cross-section of bonds, and as such is

piece-wise continuous but not differentiable in x, as shown empirically in Section 3.3. Hence the

Liu–Wu discount curves are not differentiable and thus not contained in Gα,δ in general. If the

bandwidth h(x) was chosen as a differentiable function, the resulting kernel smoothing estimator

would be special case of our framework. Note that method of Liu andWu (2021), and more generally

kernel estimators, are “local” approaches, which determine the fit and smoothness locally using only

bonds with nearby maturities. In contrast, our smoothness measure is a “global” approach, which

trades off overall smoothness against the aggregate pricing error. This will be beneficial in avoiding

overfitting and dealing with outliers as shown in our empirical study. We include the Liu–Wu

method as a the most flexible non-parametric benchmark in our empirical analysis. We show that

an optimal method needs to optimally trade off flexibility against smoothness, which we achieve

with our method.

10Note that (2) is a generalization of the norm of tension splines, which is also studied in Andersen (2007) in
the context of discount curve estimation. Indeed, we consider functions on the unbounded domain [0,∞) where we
penalize irregularities of h on long time horizons by the weight function w. The functions studied in Andersen (2007)
have a finite domain [t1, tM ], which corresponds to the restriction of our discount curve space G0,δ to [t1, tM ].

11Liu and Wu (2021) measure time in months. The sum over n up to 360 thus corresponds to a time horizon of 30
years to maturity.
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2.4 Bayesian Perspective and Distribution Theory

Our KR approach lends itself to a Bayesian interpretation. This perspective allows us to obtain

a distribution theory and confidence intervals for our estimated discount curve, yields and implied

security prices. Importantly, our estimator does not require any Bayesian assumptions, but under

this additional perspective we can make stronger statements.

Thereto we view the discount curve g as a Gaussian process with prior mean function m :

[0,∞) → R and covariance defined by the kernel k. That is, for every finite selection of maturities

z1, . . . , zn the distribution of the vector (g(z1), . . . , g(zn)) is Gaussian with mean (m(z1), . . . ,m(zn))

and covariance matrix k(zi, zj). This is not a completely ad-hoc assumption, but exploits the

standard link between Gaussian processes and RKHS estimators with a firm foundation in statistics

and machine learning. For simplicity of notation, we will stack all the cash flow dates into the

column vector x = (x1, . . . , xN )⊤ and evaluate functions elementwise. Hence, the Gaussian process

view assumes the Gaussian prior distribution

g(x) ∼ N
(
m(x), k(x,x⊤)

)
.

Next, we impose assumptions on the errors in the pricing equation (1). The pricing errors ϵi are

viewed as independent centered Gaussian random variables with variance parameters σ2i , that is

ϵ ∼ N (0,Σϵ) with Σϵ = diag(σ21, . . . , σ
2
M ).

Bayesian updating implies that the conditional distribution of g, given the observed prices P ,

is then still Gaussian with posterior mean function

mpost(x) = m(x) + k(x,x)⊤C⊤(CKC⊤ +Σϵ)−1(P − Cm(x)) (12)

and posterior variance given by the posterior kernel

kpost(x, y) = k(x, y)− k(x,x)⊤C⊤(CKC⊤ +Σϵ)−1Ck(x, y) (13)

for Kij = k(xi, xj). We arrive at the following theorem.

Theorem 3 (Bayesian perspective)

Assume the prior mean function of g is constant, m(x) = 1, the covariance kernel k is as in

Theorem 1, and the pricing error variance equals σ2i = λ/ωi. Then, the posterior mean function in

Equation (12) coincides with the KR discount curve estimator in Equation (5).

Moreover, we obtain a confidence range for the discount curve: for every finite selection of

maturities z1, . . . , zn, the conditional distribution of the vector (g(z1), . . . , g(zn)), given the observed

prices P , is Gaussian with mean (mpost(z1), . . . ,m
post(zn)) and covariance matrix kpost(zi, zj).

Thus, we obtain the posterior distribution, given observed prices P , of any fixed income in-

struments with given cash flows. In particular, the model implied coupon bond prices have the

Gaussian posterior distribution Cg(x) ∼ N
(
Cmpost(x), Ckpost(x,x⊤)C⊤).
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The Bayesian perspective offers an alternative interpretation of our estimator. We start with

an uninformative prior of the mean, while the kernel represents our prior of the deviations of this

mean.12 Observed prices with larger noise are associated with a larger non-smoothness penalty.

When updating the prior mean, we put more weight on the observed prices with smaller noise or

higher correlation with the dominant principal components of the kernel projected on the cash flows.

The posterior variance is larger for noisier observations, which corresponds to a larger penalty, or

when the prices are not spanned by the dominant principal components of the kernel projected on

the cash flows.

Appendix A.4 provides a formal discussion and the proofs for the Bayesian approach. It also

discusses the extension to more general priors. Furthermore, we show that the posterior mean

function is invariant with respect to scaling the kernel and the error variance, and hence our KR

discount curve estimator does not change. However, such a scaling impacts the posterior variance

of the estimator. We propose to select the scaling to maximize the empirical log-likelihood, which

results in the prior variance that best describes the observed data.

3 Empirical Results

We perform an extensive empirical analysis. We first describe the data and introduce the evaluation

metrics based on which we select the parameters. We then conduct a comprehensive comparison

study to the most important benchmarks. We discuss robustness to outliers and over time, curve

extrapolation, principal component analysis, and the economic implications of our method.

3.1 Data and Evaluation

We use the standard data set of CUSIP-level coupon-bearing Treasury bond data from the CRSP

Treasuries Time Series. Our main sample are daily observations from June 1961 to December 2020.

For each bond, we observe the end-of-day bid and ask prices and its features including the maturity

and coupon payments. We use ex-dividend bid-ask averaged mid-prices for the bonds and our main

analysis focuses on the end of month prices. Throughout our analysis we measure time in years.

We apply standard data filters to remove issues that trade at a premium due to their specialness

or liquidity. First, our sample only includes fully taxable, non-callable, and non-flower bond issues.13

This step ensures that our sample does not include bonds with tax benefits and option-like features.

This is the same standard filter as applied in Fama and Bliss (1987), Gürkaynak, Sack, and Wright

(2007) and Liu and Wu (2021). Second, we exclude on-the-run issues due to their liquidity and

specialness. In more detail, we follow Gürkaynak, Sack, and Wright (2007) and Liu and Wu (2021)

and exclude the two most recently issued securities with maturities of 2, 3, 4, 5, 7, 10, 20, and 30

years for securities issued in 1980 or later. We confirm that our data set is very close to Liu and

12A constant prior mean function, m(x) = 1, corresponds to a zero prior yield curve.
13This means that CRSP ITYPE equals 1, 2, or 4. We also remove the 13 issues of securities whose time series of

prices terminate because these bonds are “all exchanged”.

12



Figure 1: Maximal time to maturity in years

This figure shows the maximal time to maturity in years for all bonds in our data. The black lines correspond to
different bonds. The red line indicates the maximal maturity available on a specific day.

Wu (2021). After applying the filters, this gives us a total of 5,353 issues of Treasury securities and

121,088 end of month price quotes for 715 months.

While we show that our method is robust to outliers, we also consider the impact of various

outlier filters. The first outlier filter removes all bonds with maturities under 90 days as suggested

in Gürkaynak, Sack, and Wright (2007), as those prices seem to have the largest number of outliers

relative to estimated curves.14 The next two filters remove outliers in a data-driven way. We use

either the estimated yield curve with the Nelson-Siegel-Svensson method or our KR method to

remove those securities whose yield errors exceed three standard deviations based on the cross-

section of yield errors for that day. Our baseline setup estimates models on the data after applying

the 90-day maturity filter. However, our baseline evaluation uses no filters, and also includes the

prices of securities with maturities under 90-days. We also show the evaluation of the models after

applying the 90-day maturity, NSS- or KR-outlier detection filters. Our comprehensive analysis

shows that our results are not driven by outliers and are robust to all of these choices.

Figure 1 shows the maximum maturities of all Treasury securities over time. First, we note that

the bonds have a very unequal maturity distribution. The maximum available maturity in the first

20 years is below 20 years. While the later time periods include bonds with 30 years of maturity, the

middle spectrum of maturities between 10 to 20 years is only sparsely represented. Both empirical

facts have an impact on the estimation of the yield curve. As we will show, the estimation of the

14Not that the Treasury notes and bonds with longer maturity still have coupon payments within the first 90 days,
which allows us to estimate the short end of the discount curve.
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yield curve beyond the maximum available maturity becomes an extrapolation problem, which is

different from the interpolation between observed values. Furthermore, the estimation of the yield

curve in the sparsely populated maturity range is a challenging problem.

We compare our method (KR) with the estimates from Fama and Bliss (1987) (FB), Gürkaynak,

Sack, and Wright (2007) (GSW), and our own implementations of the Nelson-Siegel-Svensson model

(NSS) and the Liu and Wu (2021) (LW) approach.15 These are the leading benchmark methods and

discussed in detail in Section 2.3. The FB curve is constructed from piece-wise constant forward

rate estimates. Robert Bliss has shared a granular data set of estimated forward rates from June

1961 to December 2013, which we use to construct the yield curves and to price Treasury bonds.16

We implement the NSS model on the same underlying dataset as our KR method following the

procedure in Svensson (1994). We circumvent the known issue that the estimation of a non-linear

model can be numerically unstable, by using multiple numerical solvers to ensure convergence.

GSW is a specific implementation of NSS, but estimated on a more restricted data set.17 The

GSW parameter estimates are available on the authors’ website at daily frequency. We implement

the LW approach on our data following exactly the same approach as in the original paper.18

We evaluate various pricing metrics for the end of month prices for the time period from June

1961 to December 2020. However, as we have FB data only available from June 1961 to December

2013 we also show a comprehensive comparison analysis on this shorter sample, which allows us

to include FB as a benchmark method. We show all results in- and out-of-sample. The in-sample

results estimate the discount curve on the same day that we use for the evaluation. Flexible

non-parametric methods are expected to perform better, but might overfit in-sample. The out-of-

sample analysis evaluates the discount curve on the business day after the estimation day. The

underlying assumption is that the discount curve does not change much over consecutive days

and that pricing errors are only weakly dependent from day to day. Under this assumption, the

next day fit is a valid out-of-sample analysis, which measures how well the true discount curve is

estimated. As a robustness test, we also include a cross-sectional out-of-sample analysis. Similar to

our cross-validation analysis described in more detail below, we split the bond data on a day into

ten stratified samples, which have the same maturity distribution, and use nine folds for estimation

and the remaining fold for out-of-sample evaluation. This is repeated over all splits to obtain an

out-of-sample evaluation for each price. Both out-of-sample analyses lead to the same conclusions.

15We do not include spline estimators as Jeffrey, Linton, and Nguyen (2006) have already shown that simpler
variants of the LW estimator dominate those.

16We thank Robert Bliss for sharing the data with us. This data is more detailed and includes more maturities
than the version of the FB data set available on CRSP. In this granular data the knots of the yield curve are 1-month
apart up to 3 years, 6-month apart from 3 to 10 years and 1-year apart for maturities longer than 10 years. We
interpolate FB knot points using the underlying assumption of the FB model that the daily forward rate curve should
be piece-wise constant.

17Prior to 1980, GSW uses the Nielson-Siegel functional form, which sets γ3 to zero as this more restricted model
explains the sparse and shorter maturity data better. After 1980, GSW uses the general NSS form without setting
γ3 to zero. For comparability, we follow GSW’s convention and use the restricted functional form prior to 1980 for
our NSS estimates as well.

18We thank Cynthia Wu for sharing their implementation code with us. We use their optimal tuning parameter
for the adaptive bandwidth construction.
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While the cross-sectional out-of-sample analysis does not make assumptions about the dynamics of

the fitted curves and errors, we cannot use it for the already fitted curves from FB and GSW and

therefore our main analysis uses the next-day out-of-sample analysis.

We provide detailed results for different maturity ranges. More specifically, we report results

separately for bonds that are in the following ten maturity buckets: 0-3M, 3M-1y, 1y-2y, 2y-3y,

3y-4y, 4y-5y, 5-7y, 7y-10y, 10y-20y and > 20y.19 The number of available bonds in these buckets

is not evenly distributed and we observe substantially more prices for short maturity bonds. We

also use these maturity buckets for our stratified cross-validation analysis. In order to study the

effect of the parameters λ, α and δ, we apply 10-fold stratified cross-validation at the last day of

the quarter. This means that we sample randomly without replacement ten non-overlapping folds

for each day, such that each fold has the same maturity distribution as the overall sample, i.e. the

proportion of bonds in the ten maturity buckets is the same for all folds. Then, we use nine folds

for estimation and the remaining fold for evaluation. We repeat this ten times such that each data

point is used exactly once for evaluation. Importantly, a naive cross-validation that would sample

prices randomly is not appropriate because of the highly unbalanced maturity distribution.

We report average pricing and yield errors for different maturity buckets and time periods.

Given an estimated discount curve we report the root-mean-squared errors (RMSE) in weighted

prices averaged over time and maturities. More specifically, we estimate the discount curve for day

t and report aggregated pricing errors over the full sample and for each day t:20

RMSE =
1

T

T∑
t=1

RMSEt, RMSEt =

√√√√Mt∑
i=1

ωi,t

(
Pi,t − P g

i,t

)2
.

First, we report the duration weighted pricing errors, which approximate yield errors, and are

also used in the objective function of KR in Equation (3). We label this the duration weighted

pricing RMSE. Second, we list the percentage pricing errors of coupon bonds by normalizing the

bond prices to Pi,t = 100 and using equal weights ωi,t = 1/Mt, or equivalently using the weights

ωi,t = 1/(MtP
2
i,t). We label this the relative pricing RMSE. Third, we calculate the yield RMSE

between the observed yields of coupon bonds and the model implied yields,

√
1
Mt

∑Mt
i=1

(
Yi,t − Y g

i,t

)2
.

The yield and duration weighted pricing errors account for the effect of longer maturities. Fourth,

we report a maturity bucket weighed yield error based on the ten maturity buckets defined above.

The maturity weighted yield error can be interpreted as an average yield error for the hypothetical

case that the number of short maturity bonds would be the same as the number of long maturity

bonds.

19The definition of maturity buckets follows closely the one by the Treasury and Liu and Wu (2021). It takes into
account that the available bonds with longer maturities are much sparser.

20We indicate the parameters and quantities for a specific day by the additional subscript t.
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Figure 2: Cross-validation YTM RMSE for λ and α
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This figure shows the cross-validation yield RMSE in basis points (BPS) for our KR method as a function of the
smoothness parameter λ and maturity weight α. The tension parameter is set to δ = 0. The results are calculated
using quarterly data from June 1961 to December 2020.

3.2 Parameter Selection

We start our analysis by selecting the optimal parameter values for our KR method. The KR

method is completely specified up to the smoothness, maturity weight and tension parameters λ,

α and δ. We select the optimal set of parameter values in a data-driven way by applying 10-

fold stratified cross-validation, which ensures the same maturity distribution in each fold.21 For

presentation purposes we show the cross-validation results for combinations of two of the three

parameters, while the third parameter is set to the overall optimal value. We have verified that

our results remain optimal when searching over a three-dimensional grid. We use quarterly data to

speed up the calculation.22

Figure 2 shows the RMSE in yields for different choices of λ and α, while we set the tension

parameter to δ = 0. First, the choice of α has a negligible effect on the fitted yields. This is expected

as α corresponds to the yield of an infinite-maturity discount bond as formalized in Theorem A.2

in the Appendix. As we will study in more detail, the interpolation fit for finite maturities for a

flexible estimator is not affected by the choice of the infinite-maturity yield, while it mainly affects

the extrapolation for maturities that are not observed. In contrast, the choice of the smoothness

21In order to render the smoothness parameter λ comparable across the time series, we normalize it for each day
as described in Appendix A.6.2.

22For presentation purposes we only show the results for selected grid points. We have confirmed that the results
are robust to a finer grid. We have also estimated the optimal parameter choice for each day separately, that is, we
have allowed for different λt, αt and δt for each day. The results are essentially the same as for the case of using the
same parameters for each day. All of these robustness results are available upon request.
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Figure 3: Cross-validation YTM RMSE for λ and δ
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This figure shows the cross-validation yield RMSE in basis points (BPS) for our KR method as a function of the
smoothness parameter λ and tension parameter δ. The maturity weight is set to α = 0.05. The results are calculated
using quarterly data from June 1961 to December 2020.

parameter λ has a large effect on the estimation. The optimal value is attained for λ = 1. The

findings carry over to the duration weighted and relative pricing errors as shown in Figures A.1

and A.2 in the Appendix. We conclude that an infinite-maturity yield of α = 0.05 and smoothness

parameter of λ = 1 provides a (close to) optimal model with tension parameter zero.

Figure 3 shows the effect of the tension parameter for varying λ for fixed maturity weight

α = 0.05. The cross-validated yield error is increasing for most values of δ, while the value of λ = 1

remains optimal. Interestingly, a very small tension parameter of around δ = 0.001 can lead to

minor improvements. However, the effect is economically negligible and a parsimonious model that

is close to optimal would set δ = 0. It makes sense that the tension parameter δ is not relevant

for fitting a discount curve. A larger value of δ only penalizes the first derivative of the discount

curve, while a smaller value of δ penalizes more the second derivative of the discount curve, which

enforces a smoother yield curve without kinks. In other words, a good term structure model needs

a smooth yield curve. Figures A.3 and A.4 in the Appendix show that the same results hold for

the duration weighted and relative pricing errors.

Throughout the paper we illustrate the various estimated models on the three representative

days 1961-06-30, 1986-06-30 and 2013-12-31. Figure 4 shows the effect of the parameters λ, α and

δ on estimated yield curves for 1986-06-30, while Figure A.5 in the Appendix collects the results

for the other two example days. The effect of the smoothness parameter λ is as expected. Smaller

values of λ lead to yield curves with more curvature, which are more likely to overfit the data.

In contrast excessive values of λ generate curves which are not sufficiently flexible. The infinite-
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Figure 4: KR yield curve estimates as a function of parameters
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(c) Varying δ, fixed α = 0.05 and λ = 1

This figure shows yield curve estimates with KR for various combination of parameters on the example day 1986-
06-30. Subfigure (a) varies the smoothness parameter λ for fixed values α = 0.05 and δ = 0. Subfigure (b) varies
the maturity weight α for fixed values λ = 1 and δ = 0. Subfigure (c) varies the tension parameter δ for fixed values
λ = 1 and α = 0.05.

maturity yield α does not affect the shape of the yield curve for shorter maturities and only has

a subtle effect on long maturity yields. Increasing the tension parameter δ leads to “kinks” in the

yield curve, which are likely to overfit outlier prices.

Based on the cross-validation, we define our baseline KR model as λ = 1, α = 0.05 and δ = 0,

which we use in the next sections for our comparison study.

3.3 Comparison Study

Our KR method uniformly dominates all other approaches in any metric and for any selected

subsample. Figure 5 reports the yield RMSE and duration weighted and relative pricing RMSE in-

and out-of-sample for the different maturity buckets. First, we observe that the KR method obtains

smaller pricing and yield errors than all the other methods for any maturity bucket.23 Second, the

qualitative results for the in- and out-of-sample analysis are the same, while as expected the relative

difference between the flexible non-parametric methods and the parametric methods is larger for the

23The out-of-sample yield errors for bonds with maturity larger than 20 years are essentially identical for KR and
LW. However, a cross-sectional out-of-sample analysis reveals smaller yield errors for KR for this maturity bucket.
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Figure 5: Pricing errors for different maturities
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This plots shows evaluation metrics calculated out-of-sample on the short sample from June 1961 to December 2013.
Out-of-sample errors are calculated using curves estimated at t to price securities observed on the next business
day. The top panel is for duration-weighted pricing RMSE in BPS, and the mid panel is for relative pricing RMSE
in BPS. The bottom panel is for YTM RMSE in BPS. The first column corresponds to results evaluated on the
full data without filtering. The mid column shows results evaluated on the sample for which an NSS filter is used
to remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the average
YTM fitting error calculated using NSS curves in the same cross-section. The right columns is for results evaluated
on the sample for which KR is used to remove outlier securities, and the rule is the same as that of the NSS filter.
KR outperforms other methods in term of out-of-sample fitting quality according to all three evaluation metrics on
datasets with and without outlier removal. 9
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This plots shows evaluation metrics calculated out-of-sample on the short sample from June 1961 to December 2013.
Out-of-sample errors are calculated using curves estimated at t to price securities observed on the next business
day. The top panel is for duration-weighted pricing RMSE in BPS, and the mid panel is for relative pricing RMSE
in BPS. The bottom panel is for YTM RMSE in BPS. The first column corresponds to results evaluated on the
full data without filtering. The mid column shows results evaluated on the sample for which an NSS filter is used
to remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the average
YTM fitting error calculated using NSS curves in the same cross-section. The right columns is for results evaluated
on the sample for which KR is used to remove outlier securities, and the rule is the same as that of the NSS filter.
KR outperforms other methods in term of out-of-sample fitting quality according to all three evaluation metrics on
datasets with and without outlier removal. 9
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This plots shows evaluation metrics calculated out-of-sample on the short sample from June 1961 to December 2013.
Out-of-sample errors are calculated using curves estimated at t to price securities observed on the next business
day. The top panel is for duration-weighted pricing RMSE in BPS, and the mid panel is for relative pricing RMSE
in BPS. The bottom panel is for YTM RMSE in BPS. The first column corresponds to results evaluated on the
full data without filtering. The mid column shows results evaluated on the sample for which an NSS filter is used
to remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the average
YTM fitting error calculated using NSS curves in the same cross-section. The right columns is for results evaluated
on the sample for which KR is used to remove outlier securities, and the rule is the same as that of the NSS filter.
KR outperforms other methods in term of out-of-sample fitting quality according to all three evaluation metrics on
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Figure A.7: In-sample results by maturities
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This plots shows evaluation metrics calculated in-sample on the short sample from June 1961 to December 2013.
The top panel is for duration-weighted pricing RMSE in BPS, and the mid panel is for relative pricing RMSE in
BPS. The bottom panel is for YTM RMSE in BPS. The first column corresponds to results evaluated on the full
data without filtering. The mid column shows results evaluated on the sample for which an NSS filter is used to
remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the average
YTM fitting error calculated using NSS curves in the same cross-section. The right columns is for results evaluated
on the sample for which KR is used to remove outlier securities, and the rule is the same as that of the NSS filter.
KR outperforms other methods in term of in-sample fitting quality according to all three evaluation metrics on
datasets with and without outlier removal.
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(c) YTM RMSE (BPS)

This plots shows evaluation metrics calculated in-sample on the short sample from June 1961 to December 2013.
The top panel is for duration-weighted pricing RMSE in BPS, and the mid panel is for relative pricing RMSE in
BPS. The bottom panel is for YTM RMSE in BPS. The first column corresponds to results evaluated on the full
data without filtering. The mid column shows results evaluated on the sample for which an NSS filter is used to
remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the average
YTM fitting error calculated using NSS curves in the same cross-section. The right columns is for results evaluated
on the sample for which KR is used to remove outlier securities, and the rule is the same as that of the NSS filter.
KR outperforms other methods in term of in-sample fitting quality according to all three evaluation metrics on
datasets with and without outlier removal.
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Figure A.7: In-sample results by maturities

(a) Duration Weighted Pricing RMSE (BPS)

(b) Relative Pricing RMSE (BPS)

(c) YTM RMSE (BPS)

This plots shows evaluation metrics calculated in-sample on the short sample from June 1961 to December 2013.
The top panel is for duration-weighted pricing RMSE in BPS, and the mid panel is for relative pricing RMSE in
BPS. The bottom panel is for YTM RMSE in BPS. The first column corresponds to results evaluated on the full
data without filtering. The mid column shows results evaluated on the sample for which an NSS filter is used to
remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the average
YTM fitting error calculated using NSS curves in the same cross-section. The right columns is for results evaluated
on the sample for which KR is used to remove outlier securities, and the rule is the same as that of the NSS filter.
KR outperforms other methods in term of in-sample fitting quality according to all three evaluation metrics on
datasets with and without outlier removal.
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(f) YTM RMSE

This plots shows evaluation metrics calculated in- and out-of-sample on the short sample from June 1961 to December
2013. Out-of-sample errors are calculated using curves estimated at t to price securities observed on the next business
day. The top panel shows the out-of-sample results and the bottom panel the in-sample results. The evaluation
metrics are the RMSE of duration weighted and relative pricing errors and yield errors. All errors are in basis
points (BPS). We evaluate the model for different maturity buckets. The KR method uniformly outperforms all
benchmark estimators.

in-sample fits. Third, the second-best performance is observed for the LW method, which indicates

that flexible methods are needed to adequately approximate the yield curve. Importantly, the LW

method has larger errors for a maturity range between 7 to 20 years, where the observed prices

are sparse. We will revisit and explain this shortcoming when discussing the instability of the LW

method. Fourth, FB performs relatively well for short maturities, but its performance deteriorates

for longer maturities.24 Fifth, we confirm the known observation that the NSS and GSW models

24The FB estimated forward curve, that was shared with us, includes bonds with maturity less than 3 months in
the estimation. Hence, not surprisingly it can obtain slightly smaller pricing errors in the evaluation for those bonds.
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Figure 6: Out-of-sample results by evaluation metric for different filters
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(b) 3-Month Filter
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(c) KR Filter

KR NSS GSW LW FB

20

40

12.0

20.5
25.3

13.1 12.9

Duration Weighted Pricing RMSE (BPS)

KR NSS GSW LW FB
20

30

40

28.8

35.5 35.6
30.1

37.3

Relative Pricing RMSE (BPS)

KR NSS GSW LW FB

20

40

12.0

20.6
25.4

13.1 12.9

YTM RMSE (BPS)

KR NSS GSW LW FB5

10

15

9.2

12.8 13.9

9.9 10.9

Maturity Weighted YTM RMSE (BPS)

(d) NSS Filter

This plot shows aggregated evaluation metrics calculated out-of-sample on the short sample from June 1961 to
December 2013. Out-of-sample errors are calculated using curves estimated at t to price securities observed on the
next business day. Columns correspond to duration weighted pricing RMSE, relative pricing RMSE, YTM RMSE,
and maturity-weighted YTM RMSE. All numbers are in basis points (BPS). The top panel correspond to results
evaluated on the full data without filtering. The second panel shows results evaluated on data where securities
maturing within three months are removed. In the third panel, results are evaluated on the sample for which an
NSS filter is used to remove outlier securities, whose YTM fitting errors are at least three standard deviation away
from the average YTM fitting error calculated using NSS curves in the same cross-section. The last panel collects
the results evaluated on the sample for which KR is used to remove outlier securities with the same three-standard-
deviation rule as for the NSS filter. KR outperforms other methods in term of out-of-sample fitting quality according
to all four evaluation metrics on datasets with and without outlier removal.

are not well suited to estimate the short end of the yield curve. Last but not least, we emphasize

the economic importance of the superior fit of the KR method as even small errors in yields can

have large economic effects.

As expected the duration weighted pricing RMSE and yield RMSE are essentially identical. By

construction, the relative pricing RMSE puts larger emphasis on longer maturities as the same yield

For the maturity bucket up to 3 months, our KR method has the smallest pricing errors among all the methods that
do not include those bonds in the calibration.
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error has a larger effect for a longer maturity bond. Hence, different metrics put different weights

on different parts of the maturity spectrum. The comparison analysis in the main text focuses on

the shorter sample until 2013 in order to include FB. Tables A.1 and A.2 in the Appendix give

a comprehensive summary and show that all the results carry over to the full sample until 2020.

Table A.2 also shows that the cross-sectional out-of-sample analysis leads to the same findings as

the next-day out-of-sample analysis in the main text.

Our results are not driven by outliers and are robust to various filters. Figure 6 shows the

aggregate out-of-sample RMSE for different evaluation metrics for different evaluation samples.

Most importantly, our KR continues to uniformly dominate all other methods. First, we consider

the aggregate metrics on the full data including the first 3 months of maturities. This increases

in particular the yield errors of the parametric NSS and GSW estimates. Second, we report the

aggregate statistics with the 3-month filter, which particularly benefits the parametric approaches.

The relative performance stays the same, while we note that all methods seem to have relatively

large yield errors for the very short maturity bonds. The relative pricing errors are the largest for

FB as this method has the worst fit for long maturity bonds. As the number of bonds with longer

maturities is relatively small, the equally weighted yield error for FB does not accurately reflect

this issue. The maturity-bucket-weighted yield error combined with the 3-month filter reveals that

the FB method provides actually the worst fit of the yield curve when excluding the short end.

The third and fourth panel of Figure 6 remove outliers based on KR or NSS filters. The results

are qualitatively similar, confirming that it is not particular outlier values that drive our findings.

By construction, the NSS filter should improve the fit of the NSS method, but it does not affect

the relative ranking. Similarly, the KR filter improves the fit of the non-parametric methods, but

does not change the relative ranking. Last but not least, our estimate of NSS and the estimate

of GSW are close. However, it seems that using our data and a careful implementation of the

optimization of NSS lead to slight improvements. Figures A.6, A.7 and A.8 in the Appendix show

that the findings are the same in-sample and for different maturity buckets. Our simulation study

in Section C in the Appendix further supports the empirical findings.

The estimated yield curves in Figure 7 for the three representative example days shed further

light on why we observe these pricing results. The left subplots show yield curves for the three

non-parametric methods KR, LW and FB and on the right we show the estimates for the parametric

GSW and NSS models. The first example day is in the early part of the sample and has shorter

maturity bonds. The piece-wise constant FB forward curve leads to visible kinks and the least

smooth yield curve. Figure A.9 in the appendix shows the observed and fitted bond yields for the

three days. The FB method is visibly overfitting individual bonds. By construction, the NSS and

GSW curves are very smooth, but misspecified for the short end and lack the flexibility for more

complex shapes. As expected the NSS and GSW curves are very close, while the level of the NSS

yield curve is slightly closer to the non-parametric benchmarks. Importantly, the first and third

day illustrate the known issues of the NSS model for the very short end. The functional form

strongly deviates from the non-parametric estimates and the actually observed coupon bond prices
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Figure 7: Yield curve estimates of different methods

0 2 4 60.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

Non-parametric Methods
KR
LW
FB

0 2 4 60.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

Parametric Methods
NSS
GSW

(a) 1961-06-30

0 5 10 15 20 25 30
0.060

0.065

0.070

0.075

0.080

0.085
Non-parametric Methods

KR
LW
FB

0 5 10 15 20 25 30
0.060

0.065

0.070

0.075

0.080

0.085
Parametric Methods

NSS
GSW

(b) 1986-06-30
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(c) 2013-12-31

This figure shows the yield curve estimates for the three representative example days: 1961-06-30 (top panel), 1986-
06-30 (mid panel), and 2013-12-31 (bottom panel). The left and right columns show estimates for non-parametric
and parametric methods.

and explains the extreme pricing errors at the short end.

The KR method optimally trades off smoothness against flexibility. The LW method is also
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flexible and seems to capture similar shapes. However LW curves may not be smooth because of the

jumps in its bandwidth selection, and as we will show LW is more prone to overfitting the data. The

jumps for the LW yield curve are particularly visible on 1986-06-30 for the sparse maturity range

of around 17 years. Figure A.10 in the Appendix shows the LW bandwidth estimates. Whenever

the density of observed coupon prices changes, it leads to excessive changes in the bandwidth.

Our KR method gives the overall smoothest curve, while at the same time has the smallest

pricing errors. Figure 8 shows the aggregate tension and curvature measures for the different

estimation approaches for different maturity buckets.25 All yield curves are continuous, which

results in fairly similar first derivatives of the discount curve. As expected, the FB curve is the

least smooth as technically it is not even twice differentiable. The second least smooth curve is

LW due to its non-continuous bandwidth selection. Interestingly, the parametric NSS and GSW

are less smooth than KR at the very short end, due to the misspecified estimates as illustrated in

Figure 7. In summary, the objective function of KR results in yield curves that are as smooth as

a parametric model, while having substantially smaller pricing errors. The discretized derivates in

Figure 8 are based on monthly maturities, while the corresponding results based on daily maturities

are in Figure A.11 in the Appendix. By construction, the piece-wise constant FB forward curve has

daily numerical derivatives that are zero for most days and hence appears to be smoother under

this measure. In contrast, the daily bandwidth changes for LW blow up the daily derivative of its

yield curve. The smoothness measures of the KR curve are not affected by moving from monthly

to daily discretized derivatives.

Figure 8: Tension and curvature for different maturities
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This plot shows the discretized measures for tension (left panel) and curvature (mid panel) for different maturity
ranges. The right panel shows the curvature measure for KR, NSS, and GSW only. The discrete derivatives use
monthly granularity. Results are calculated on the short sample from June 1961 to December 2013.

25We compute these measures by numerically discretizing the integrals 1
|R|

∫
R g′(x)2 dx and 1

|R|

∫
R g′′(x)2 dx over

the maturity ranges R, where |R| denotes the length of R, and where we discretize the derivaties g′ and g′′ by the
respective difference quotients.

23



3.4 Robustness

Our KR estimator combines flexibility with robustness to outliers. Figure 9 illustrates the effect of

the non-parametric estimation after contaminating the data with a single large outlier. We report

the observed and the model implied coupon bond prices for KR and LW for the representative

example day 1963-06-28. The discount curves are once estimated on the actual observed prices and

once after increasing a single bond price by 3, 5 or 10%. The left subplot shows that the estimates

of the KR method are barely changed after adding this single outlier. In contrast, the long maturity

yield estimates of the LW method in the right subplot are strongly biased downwards after adding

a single outlier data point.

Non-parametric kernel estimators like the LW method are inherently local in nature. Intuitively,

the LW method takes a weighted average of the yields of eight nearby bonds. If one of these bonds

is an outlier, it can lead to a massive bias for the estimates of the neighboring points. This problem

becomes particularly severe in only sparsely populated maturity regions where fewer data points

are available and one outlier can contaminate a large fraction of the yield curve. The local nature

of kernel estimators also implies that the fit for short maturities is decoupled from the fit for long

maturities. In contrast, our KR method is conceptually different as it takes advantage of a global

smoothness reward. Therefore, the KR estimator only allows for more curvature if this in turn

reduces the overall pricing error. Our KR estimator shares the robustness properties of regularized

estimators. We conclude that our KR method provides a robust estimation, while local estimators

like LW are more prone to overfitting singular outliers. As a consequence of its superior pricing

and robustness properties, the KR estimator naturally lends itself as a tool to filter outliers in a

data-driven way.

Figure 9: Yield estimation with outlier contamination
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This plot shows the observed and fitted yields given by KR (left panel) and LW (right panel). The discount curves
are either estimated on the observed prices or after increasing the price of a single bond by 3, 5 or 10%. The maturity
of the contaminated security is marked with red vertical lines. The results are for the representative example day
1963-06-28. KR is substantially more robust to noise compared to LW.
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3.5 Extrapolation

The yield curve estimation up to the maximal observed maturity can be interpreted as an inter-

polation problem. In this section we study the problem of estimating a yield curve beyond the

maximal observed maturity, which is conceptually an extrapolation problem. Figure 10 shows the

estimated yield curves for KR as function of the different parameters on 1986-06-30, while Figure

A.14 in the Appendix collects the results for the other example days. We plot the yield curve for

up to 50 years. The maximal observed maturity is indicated by the red horizontal line, and hence

the curves beyond it are extrapolated. We observe that all three parameters have a much more

pronounced effect on the extrapolation region.

Figure 10: Extrapolated KR yield curves
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(c) Varying δ, fixed α = 0.05 and λ = 1

This figure shows yield curve estimates with extrapolation to 50-year maturity for KR as a function of parameters
on the example day 1986-06-30. The region to the right of the red dashed vertical line is the extrapolation region.
Subfigure (a) varies the smoothness parameter λ for fixed values α = 0.05 and δ = 0. Subfigure (b) varies the
maturity weight α for fixed values λ = 1 and δ = 0. Subfigure (c) varies the tension parameter δ for fixed values
λ = 1 and α = 0.05.

Recall that the maturity weight α corresponds to the yield of a discount bond with infinite

maturity. As the yield of such a bond is obviously not observed, it becomes a choice parameter.

Panel (b) in Figure 10 shows that the choice of α essentially only affects the extrapolation region, but

does not change the interpolation part. This makes sense as intuitively the KR method optimally

joins the observable bond yields with the infinite-maturity yield, which cannot be learned from the

observed prices. The extrapolation depends on our prior for the infinite-maturity yield and hence
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is a choice by the researcher. The situation is different for λ and δ as those parameters can be

optimally estimated from the observed prices. Our optimal baseline model uses λ = 1, δ = 0 and

α = 0.05. In this case, the extrapolated curves would smoothly connect the observed yields with

the infinite-maturity yield of 0.05.

Non-parametric estimators are designed for interpolation. We want to emphasize that this is

not a weakness of our approach but a conceptual point. Extrapolation requires extra assumptions

on the extrapolation region, either in the form of imposed functional restrictions as in the NSS

model, or by an exogenous choice of α in the KR model. However, such assumptions can generally

not be verified by the observed data in the interpolation region. The advantage of our KR method

is that the only exogenous choice parameter needed for the extrapolation has a clear economic

interpretation as the infinite-maturity yield.

3.6 Statistical Inference

Our distribution theory provides guidance on the quality of our point estimates. Figure 11 shows the

99% confidence bands for the yield curve estimates based on Theorem 3 for the three representative

example days. The left subplots depict the results up to the maximal observed maturity. We observe

wider confidence intervals for maturity regions with less observed prices, for example the maturities

over 20 years on 1986-06-30. The confidence intervals also increase if there is larger dispersion in

prices, which is particularly prominent for the very short end. The wider confidence intervals also

reflect the regions where different estimators disagree. The third example day is comparatively

”easy” to fit and hence all models agree on it. As a result the confidence bands are very tight.

Figure A.15 in the Appendix shows the corresponding confidence bands for the discount curve

estimates with the same findings. The confidence intervals for the implied prices of individual

coupon bonds in Figure A.16 further highlight the uncertainty for sparsely populated maturity

regions.

The distribution theory also confirms the conceptual point that yield curve estimation is an

interpolation and not extrapolation problem. The right subplots in Figure 11 display the confidence

intervals for yield curve estimates up to 50 years. Given the observed prices, the extrapolation

quickly leads to exploding confidence bands. In other words, the observed data can tell us little

about yields with very long maturity.

3.7 Results over Time

The relative comparison results are robust over time. Figures A.12 and A.13 show the yield errors

for different maturity buckets for each month. The parametric GSW and NSS estimates lead to

particularly large yield errors for bonds with maturities shorter than one year. While these errors

are more pronounced in the earlier part of the sample, they also persist throughout the full sample.

The pricing errors of FB are visibly larger for longer maturity bonds. The non-parametric KR and

LW methods have the smallest pricing errors throughout the full sample. The variation in pricing

errors for longer maturities is positively related to the overall magnitude of yields over time.
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Figure 11: KR yield curve confidence bands
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The figure shows 3-standard-deviation confidence bands for yield curve estimates given by the KR model under the
Gaussian process assumption. The panels correspond to the example dates 1961-06-30, 1986-06-30, and 2013-12-31.
The left column shows results without extrapolation, and the right column includes extrapolation results for up to
50-year maturity.
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Figure 12(a) shows the estimates of the 30-day yield over time for all methods. The one-month

yield is an important input for academic research and a crucial economic indicator. The most

obvious observation is that the GSW and NSS estimates for the one-month yield cannot be used

in good faith for the first half of the sample. The FB estimates are closer to the KR estimates, but

exhibit some smaller irregularities. We conclude that we need to use one of the three non-parametric

methods KR, LW or FB for economically meaningful short rate dynamics.

Figure 12: Short and long maturity rate estimates over time
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The plot shows the time-series of short and long maturity rate estimates for different methods over time. Subplot (a)
displays the annualized 30-day yield estimates. Subplot (b) shows the 10-year forward rate for a one-year horizon,
that is the the time t forward rate for a one-year investment from t+10 to t+11 locked in at time t. Subplot (c) is
the same plot as (b) but only for the KR and LW estimates. The time-series of FB ends in December 2013, while
the other four time-series are available until December 2020. Prior to the 1970s, the 10-year forward rate needs to
be obtained via extrapolation which we do for the KR, GSW and NSS methods. Since we do not extrapolate LW,
their estimates starts after the 1970s.

The dynamics of long maturity rates are also sensitive to the choice of estimator. Figure 12(b)
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shows the 10-year forward rates for a one year investment over time. We use forward rates instead

of yields as long maturity yields are the average of forward rates and hence the effects for the long

maturity spectrum are partly averaged out in the yields. The estimates of FB deviate excessively

and suggest that this method is not reliable for long maturities. This is further confirmed in the

out-of-sample yield errors in Figure A.13, which spike during the times when the FB estimates

deviate from the other methods.

The KR and LW estimates of the 10-year forward rate are close most of the time, but LW is

not that stable and has several instances where it overshoots. For a better comparison, Figure

12(c) shows the forward rates for only these two methods. There are visible differences for some

days, and a close look at Figure A.13 reveals that the out-of-sample yield errors of LW also exceed

those of KR on those days. In order to better understand these results, we inspect December 2008,

which has a visible spike for LW relative to KR. The yield curve plots in Figure 13 illustrate the

dynamic instability of LW for this time period. It shows the estimated yield curves for the end of

month of 11/2008, 12/2008 and 1/2009. For both, 11/2008 and 1/2009, all three non-parametric

methods estimate a nontrivial shape for longer maturity yields. In fact, the LW estimates have

even more curvature than the corresponding KR estimates. However, while the shape of the yield

curve estimates of KR (and FB) stays roughly the same on the in-between month 12/2008, the LW

estimate substantially changes its shape. This new shape is not only inconsistent with the other

methods and over time, but also leads to a spike in pricing errors. This arguably erroneous shape

estimate distorts the dynamics of the LW forward rate for that date.26 This is the consequence of

the instability of a non-parametric method that is not sufficiently regularized. We conclude that

our KR method provides the most reliable and stable dynamics for interest rates.

Figure 13: Yield curve estimates of non-parametric methods on dates around December 2008
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This figure shows the yield curve estimates for the three days: 2008-11-28 (left panel), 2008-12-31 (mid panel), and
2009-01-30 (right panel).

Given the robustness of the KR method, we already obtain stable time-series for all maturities.

We want to note that our method can be easily modified to obtain even smoother temporal behavior.

Instead of “anchoring” the discount curves at the vector of 1’s, we can use the previous day estimates

26These example days also illustrate the instability of the LW method for the very short end, where the estimated
yields are negative.
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as a prior. Hence, we would non-parametrically model the change relative to the previous day

discount curve. This idea is explained in more detail in Appendix A. This is another attractive

feature of our approach.

3.8 Basis Functions

What are the basis functions that lead to the superior fit of our method? As a starting point,

Figure A.17 in the Appendix plots some kernel basis functions of our baseline model.27 As predicted

by the closed-form expressions in Theorem 1, these are monotonically increasing functions with

different slopes and by themselves offer limited additional insight. However, what matters is the

space spanned by the kernel basis functions. As our KR estimator simplifies to a simple ridge

regression, the smoothness reward will put most weight on the leading principal components of

the kernel space. Hence, the eigenvectors of the dominant eigenvalues of the kernel space are the

most important basis functions. In the following we restrict our analysis to the first 10 years of

maturity as we relate it to the PCA of a panel of estimated discount curves, which without excessive

extrapolation is only available for this shorter maturity.28

Figure 14 depicts the eigenvectors of the six largest eigenvalues of the kernel matrix up to

10 years of maturity. The shape of the first two eigenvectors can be recognized as a slope and

curvature pattern. More generally, the eigenvectors relate to polynomials of increasing order. The

first eigenvector appears to be a polynomial of order one, the second eigenvector is a polynomial

of order two, etc. A smaller smoothness parameter λ implies a higher weight on higher order

polynomials. Intuitively, a very smooth curve with large λ enforces an approximation with a lower

order polynomial function. Recall, that these basis functions are not ad-hoc choices, but the solution

of a problem with parameters that are optimally selected from the data.

The eigenvectors of the kernel matrix can be interpreted as portfolio weights for discount bonds.

As shown in Equations (5) and (6) our KR estimator maps into a portfolio composed of the observed

traded bonds. In the hypothetical case, where the traded bonds form a complete set of discount

bonds and hence the cash flow matrix C simplifies to the identity matrix, these eigenvectors corre-

spond to the portfolio weights on the discount bonds. By increasing λ, we essentially approximate

the full cross-section of discount bonds with a small number of portfolios of discount bonds, whose

portfolio weights are given by the eigenvectors in Figure 14.

We recognize the same shapes in the PC estimates in Figure 15. This figure shows the eigen-

vectors of the six largest eigenvalues of the covariance matrix based on the panels of estimated

discount curves for different methods.29 First, the PC estimates of all methods have the shape of

27As stated in Theorem 1, these kernel basis functions correspond to the columns of the kernel matrix K.
28In the main text we show the results for the panel from November 1971 to December 2013, as this is the subset

for which we have estimates of discount bonds up to 10 years of maturity for FB and LW. In the Appendix in Figure
A.18 we show the corresponding results for the longer panel from June 1961 to December 2013 with up to five years
of maturity. This is the highest maturity and longest panel for which we do not require extrapolation for FB and
LW. We have confirmed on the panel starting after 1982 that all qualitative findings generalize to maturities longer
than 10 years.

29While using yields or returns of discount bonds for the PCA estimation will affect the magnitude of the eigenvalues,
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Figure 14: Eigenvectors of the KR kernel matrix
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This figure plots the eigenvectors of the six largest eigenvalues of the KR kernel matrix Kij = k(xi, xj) for the
baseline model λ = 1, α = 0.05 and δ = 0.

polynomials with increasing order. Note that the sign of the eigenvectors is not identified and that

some of the eigenvectors need to be flipped. Second, we observe that all methods provide very

similar estimates for the first two PCs. FB, GSW and NSS start to differ from KR and LW for the

third and higher PCs. There are visible differences between KR and LW for the fifth and sixth PC.

The non-parametric basis functions of the KR method are the same basis functions that explain

the variation in a panel of discount curves. The differences in estimated yield curves is reflected in

different estimates of higher order PCs. The estimates of NSS, GSW and FB lead to particularly

misspecified fifth and sixth PCs. The occurrence of level, slope and curvature type patterns in a

panel of discount curves is not a coincidence. It is rather the consequence that these are the type of

basis functions that best explain the functional form of the yield curve. As an illustrative example

consider the case where the KR estimator would be limited to using only the first two PCs of the

kernel matrix. By construction, these PCs would appear as slope and curvature “factors” in the

panel of estimated discount bonds.

Our companion paper Filipović, Pelger, and Ye (2022) explores the implications of these basis

functions for the term structure premium and factor structure of the cross-section of bond returns.

In more detail, our companion paper explains the relationship between fitting a non-parametric

model with few basis functions and the implication for a low dimensional factor model for a panel.

This allows us unify the term structure asset pricing literature with the fundamental non-parametric

it has a negligible effect on the shapes of the eigenvectors. We study this aspect in depth in our companion paper
Filipović, Pelger, and Ye (2022).
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estimation problem of the discount curve.

Figure 15: Principal Component Analysis of panel of discount bonds
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This figure shows the first 6 principal components (PCs) estimated from the panel of discount curves for the five
methods KR, GSW, NSS, LW, and FB. The PCs correspond to the eigenvectors of the largest eigenvalues of the
covariance matrix of discount bond prices. The panel are the estimated discount bond prices up to 10-year maturity
for the sample from November 1971 to December 2013.

3.9 Economic Importance

The estimated yield curve is a critical input for many research areas in economics and finance.

This includes among others understanding the term structure effects, bond term premia, return

forecasting, exchange rates, monetary policy and broadly asset pricing and derivatives. A more

precise and robust estimation of the yield curve benefits the downstream application. The economic

implications of the choice of estimation method for the discount curve depend on the applications,

and on which methods are compared with each other.

The economic implications of using non-parametric versus parametric estimators are the most

pronounced and visible in many applications. Parametric estimates such as GSW differ the most

from the non-parametric estimates of KR and LW. Essentially any empirical asset pricing study

requires a risk-free rate, which is usually taken as the 30-day Treasury yield. The GSW short-term

rates are not suitable for any of those applications and can lead to non-negligible spurious effects.

However, in a conventional reduced-form asset pricing application, the short-term risk free rates of

KR, LW or FB for obtaining returns in excess of the risk-free rate would give essentially the same

results. Cochrane and Piazzesi (2009) and Gürkaynak, Sack, and Wright (2010) made the point

that the GSW yields reduce predictability because of their overly simplistic form. The estimates
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of KR and LW are not identical, but relatively close and, more importantly, deviate in a similar

way from the GSW curves. Therefore, we conjecture that the findings of Liu and Wu (2021) with

respect to the work of Cochrane and Piazzesi (2005) and Giglio and Kelly (2017) carry over to

our setting. Hence, the choice of yield curve has economic implications in terms of forecasting

regressions and excess volatility of long-term bond prices among others.

The differences between non-parametric methods like KR and LW are more subtle. In ap-

plications based on aggregate quantities, these subtle differences might not affect the aggregated

averages. KR has smaller pricing errors than LW, but the magnitude of improvement of KR over

LW is smaller compared to the improvements over the parametric GSW. The principal component

analysis of the previous section illustrates that the differences between the KR and LW methods

appear in the fifth and sixth principal components. Hence, the applications for which the economic

implications will differ are those that depend on an extremely precise estimation of the yield curve.

In our companion paper, Filipović, Pelger, and Ye (2022), we study the term structure risk pre-

mium and the connection between the non-parametric estimate and the bond risk factors. We can

link bond risk factors to higher order PCs and show that they carry a substantial risk premium.

This is an example of how the precise estimation of the yield curve can result in exploitable trading

strategies.

Applications that require a very precise estimation of the yield curve dynamics can change by

using KR. For example the occasional spurious spikes in the long-term forward rates of LW can

affect trading decisions and the local estimation of dynamic models. However, these effects might

not show up in an aggregate forecasting regression that reports only aggregated results, which

can diminish episodic effects. Another important area is the pricing and hedging of interest rate

derivatives, where small differences in the estimated forward rates are magnified.

A large part of the term structure literature focuses on the U.S. Treasury market, which is

among the most liquid sovereign bond markets. We expect the benefits of our robust and flexible

estimator, which provides precise discount curve estimates even with sparse and noisy data, to

be even larger for government bonds of other countries. For this reason we are going to create a

comprehensive public yield data library of KR estimates for the major fixed income markets.

In summary, because KR is providing uniformly more precise and robust estimates, there is

no argument for using any other existing parametric or non-parametric methods. The economic

implications of the choice of yield curve estimate depend very much on the application.

4 Conclusion

The precise and robust estimation of the yield curve is of fundamental importance for economic

researchers and practitioners. This paper develops a robust, flexible and easy-to-implement method

to estimate the yield curve. Our approach is a machine learning solution that is tailored to the eco-

nomic problem. Our method optimally learns basis functions in reproducing kernel Hilbert spaces.

It imposes minimal assumptions on the true underlying yield curve, using only the core elements
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that define the estimation problem. We trade off pricing errors against an economically motivated

smoothness reward of the discount curve. We show that most existing models for estimating the

discount curve are nested within our general framework by imposing additional ad-hoc assump-

tions. We provide a closed-form solution of our machine learning estimator as a simple kernel ridge

regression, which is straightforward to implement.

Our estimates set the new standard for yield curve estimation. We show in an extensive em-

pirical study on U.S. Treasury securities that our method uniformly dominates all parametric and

non-parametric benchmarks. Our method achieves smaller out-of-sample yield and pricing errors,

while being robust to outliers. We provide a publicly available and regularly updated new bench-

mark data set for daily zero-coupon Treasury yields based on our estimates. Our benchmark data

set provides the most precise zero-coupon Treasury yield estimates for all maturity ranges, while

being robust to data selection choices.

Besides superior estimates, our novel perspective also provides new insights for spanning the

term structure. The non-parametric basis functions that best explain the discount curve on any

specific day are closely related to the basis functions that explain the variation in a panel of

discount curves. The occurrence of level, slope and curvature type patterns in such a panel is not

a coincidence, but a consequence of our finding that these type of basis functions best explain the

functional form of the yield curve. So far, the literature has largely separated the two problems

of yield curve estimation and explaining the term structure premium for a cross-section of bond

returns. Our findings lay the foundation for a new direction that can connect these two problems

by unifying term structure asset pricing with non-parametric yield curve estimation.
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Filipović, D., M. Pelger, and Y. Ye (2022): “Shrinking the Term Structure,” Working paper.
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A Theory

In this appendix we provide the theoretical background and proofs of our main results.

A.1 General Functional Analytic Perspective

We first recap a fundamental notion in statistical machine learning, namely that of a reproducing

kernel Hilbert space. For more background and applications we refer the reader to, e.g., Rasmussen

and Williams (2006); Cucker and Zhou (2007); Hastie, Tibshirani, and Friedman (2009); Paulsen

and Raghupathi (2016); Schölkopf and Smola (2018). Let E be an arbitrary set and H a Hilbert

space of functions h : E → R. H is called a reproducing kernel Hilbert space (RKHS) if, for any

x ∈ E, there exists a function kx ∈ H such that the scalar product ⟨h, kx⟩H = h(x) acts as evaluation

at x for all h ∈ H. The function k : E×E → R induced by k(x, y) = ⟨kx, ky⟩H = ky(x) is called the

reproducing kernel of H. It has the property that for any finite selection of points x1, . . . , xn ∈ E

the n × n matrix with elements k(xi, xj) is symmetric and positive semi-definite. Thanks to the

powerful property called the representer theorem, many kernel-based machine learning problems

boil down to finite-dimensional standard convex optimization. Our following results are a variant

thereof.

For our purpose of learning the discount curve g, we set E = [0,∞). We will also discuss

extensions to E = [0,∞] in Section A.5 below. As g(0) = 1, it is convenient to model the discount

curve as

g = p+ h (14)

for some exogenous prior curve p : [0,∞) → R with p(0) = 1, and a hypothesis function h optimally

chosen from a RKHS H consisting of functions h : [0,∞) → R with zero initial value h(0) = 0.30

We denote by k : [0,∞)× [0,∞) → R the reproducing kernel of H, so that k(0, 0) = 0. A feasible

example of the prior curve is p(x) = e−rx for some constant prior interest rate r. A special case

is the constant p = 1, which actually is our choice in the main text. We derive the main results

in this section for the present general setup so that researchers can draw on it while using their

preferred hypothesis spaces.

30Model (14) is in line with the linear-rational term structure models, see (Filipović, Larsson, and Trolle, 2017,
Eqn. (21)).
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As in Section 2.1, we let P = (P1, . . . , PM )⊤ denote the observed prices of M fixed income

securities with cash flows on dates 0 < x1 < · · · < xN summarized in the M ×N cash flow matrix

C. We write Ci = (Ci1, . . . , CiN ) for the i-th row of C. We also write x = (x1, . . . , xN )⊤ and,

accordingly, f(x) = (f(x1), . . . , f(xN ))⊤ for any function f . The fundamental value of security i is

thus P g
i = Ci(p(x) + h(x)). We then learn the ground truth discount curve (14) from the data as

solution of the optimization problem

min
h∈H

{
M∑
i=1

ωi(Pi − Ci(p(x) + h(x)))2 + λ∥h∥2H

}
(15)

for some exogenous weights 0 < ωi ≤ ∞ and a regularization parameter λ > 0. This nests and

generalizes (3) in three ways. First, we model the discount curve g by (14). Second, we measure

regularity of g by the H-norm ∥h∥H. And, third, we now explicitly allow for infinite weights,

ωi = ∞, which corresponds to an exact pricing condition, Pi = Ci(p(x) + h(x)). Accordingly, we

define the index sets I1 = {i | ωi = ∞} and I0 = {1, . . . ,M} \ I1. Problem (15) is then to be read

as the constrained optimization problem

min
h∈H

∑
i∈I0

ωi(Pi − Ci(p(x) + h(x)))2 + λ∥h∥2H


subject to Pi − Ci(p(x) + h(x)) = 0, i ∈ I1.

(16)

This problem is well-posed and admits a closed-form solution, as the following kernel representer

theorem shows. Thereto, we define the positive semi-definite N ×N kernel matrix K = k(x,x⊤),

that is, with components Kij = k(xi, xj). Moreover, for any index set I, of size |I|, we denote by

CI the |I| ×N -matrix consisting of the rows Ci, i ∈ I.

Theorem A.1 (General kernel ridge regression solution)

Assume that either I1 = ∅ or CI1KC⊤
I1 is invertible. Then the M × M -matrix CKC⊤ + Λ is

invertible, where Λ = diag(λ/ω1, . . . , λ/ωM ) and we define λ/∞ = 0. Moreover, there exists a

unique solution h = h̄ ∈ H of (15), and it is given by

h̄ = k(·,x)⊤β (17)

where β is given by

β = C⊤(CKC⊤ + Λ)−1(P − Cp(x)). (18)

The corresponding discount curve is ḡ = p+ h̄.

Proof. Define the linear sampling operator S : H → RN by Sh = h(x) for h ∈ H. Its adjoint is

given by S∗β = k(·,x)⊤β for β ∈ RN , and SS∗ : RN → RN has matrix representation K. Hence
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we can rewrite (16) in operator form

min
h∈H

∑
i∈I0

ωi(Pi − Cip(x)− CiSh)
2 + λ∥h∥2H


subject to Pi − Cip(x)− CiSh = 0, i ∈ I1.

(19)

Existence for (19) follows from well-known results on the existence of minima of convex functions on

Hilbert spaces, see, e.g., (Brezis, 2011, Corollary 3.23). Indeed, by the presence of the penalty term

λ∥h∥2H, the objective function, say Φ(h), in (19) is continuous, strictly convex in h, and coercive,

Φ(h) → ∞ as ∥h∥H → ∞. Uniqueness follows from the strict convexity of Φ.31 By the same token,

it follows that the solution of (19) must lie in the orthogonal complement of the null space of CS.

That is, h = S∗C⊤q, for some q ∈ RM . Plugging this in (19) leads to the convex optimization

problem in RM

min
q∈RM

∑
i∈I0

ωi(Pi − Cip(x)− CiKC⊤q)2 + λq⊤CKC⊤q


subject to Pi − Cip(x)− CiKC⊤q = 0, i ∈ I1.

(20)

The Lagrangian L : RM × R|I1| → R of (20) is given by

L(q, ν) =
∑
i∈I0

ωi(Pi − Cip(x)− CiKC⊤q)2 + λq⊤CKC⊤q + 2
∑
j∈I1

νj(Pj − Cjp(x)− CjKC⊤q).

The first order conditions, DqL = 0 and DνL = 0, read∑
i∈I0

(
ωi(Pi − Cip(x)− CiKC⊤q)− λqi

)
CKC⊤

i +
∑
j∈I1

(νj − λqj)CKC⊤
j = 0, (21)

PI1 − CI1p(x)− CI1KC⊤q = 0. (22)

A particular solution (q, ν) to (21)–(22) is given by setting ν = λqI1 where q solves

(CKC⊤ + Λ)q = P − Cp(x). (23)

Indeed, (23) admits a unique solution q, as CKC⊤+Λ is invertible by assumption. This completes

the proof.

31Note that while the solution to (19) is unique in H, a solution to (20) may not be unique in RM . Indeed, we do
not assume that kerS∗C⊤ is zero.
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A.1.1 Proof of Theorem 1

The first part of Theorem 1 follows from Theorem A.1, for the constant prior curve p = 1 in (14),

noting that

Gα,δ = {g = 1 + h | h ∈ Hα,δ} (24)

for the RKHS H = Hα,δ defined in Section A.3 below. The expressions for the reproducing kernels,

and the last statement, follow accordingly from Lemmas 6 and 7. This completes the proof of

Theorem 1.

A.2 A Workable Hypothesis Space: Weighted Sobolev Type

We propose a workable hypothesis space that comes with minimal and reasonable structural as-

sumptions. Specifically, we study in detail the RKHS H = Hw,δ consisting of differentiable

functions h : [0,∞) → R of the form h(x) =
∫ x
0 h

′(t) dt with absolutely continuous derivatives,

h′(x) = h′(0) +
∫ x
0 h

′′(t) dt, for Lebesgue integrable h′′, and with finite norm given by

∥h∥w,δ =

(∫ ∞

0

(
δh′(x)2 + (1− δ)h′′(x)2

)
w(x) dx

) 1
2

, (25)

for some measurable weight function w : [0,∞) → [1,∞) and shape parameter δ ∈ (0, 1). The

RKHS Hw,δ is a weighted Sobolev type space.32 We extend the setup to include the boundary

cases δ ∈ {0, 1}, as follows.

(i) For δ = 0, we assume in addition to the above that

Cw,0 =

∫ ∞

0
w(x)−1 dx <∞ (26)

and that functions h in Hw,0 satisfy limx→∞ h′(x) = 0.33 See also Remark 1.

(ii) For δ = 1, we only assume that functions h in Hw,1 are absolutely continuous of the form

h(x) =
∫ x
0 h

′(t) dt, for Lebesgue integrable h′, and with finite norm (25).

Remark 1

For δ = 0, (26) is a sufficient condition such that h′(x) converges to a finite limit as x → ∞, for

32In particular, h ∈ Hw,δ implies that h′ ∈ H1(I) for the standard Sobolev space H1(I) on I = (0,∞) in (Brezis,
2011, Chapter 8), for any δ ∈ (0, 1). Note that h′ and h′′ in (25) are representatives of their equivalence classes with
respect to dx-a.s. equality.

33Without this assumption, (25) would not define a bona fide norm, as the left-hand side of (25) is zero for the
linear function h(x) = x when δ = 0. Note that limx→∞ h′(x) = 0 holds a fortiori for h ∈ Hw,δ for δ ∈ (0, 1) due to
the finiteness of (25). This follows similarly as in (Brezis, 2011, Corollary 8.9). Note also that this property arises
naturally from representing the discount curve g(x) = exp(−

∫ x

0
f(t) dt) in terms of the forward curve f . With prior

curve p = 1, we have h′(x) = g′(x) = −f(x)g(x), and thus limx→∞ h′(x) = 0 is tantamount to limx→∞ g(x) = 0 and
bounded forward rates, lim supx→∞ |f(x)| < ∞. This obviously generalizes to any differentiable prior curve p with
limx→∞ p′(x) = 0.
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all h ∈ Hw,0.
34 Indeed, using the Cauchy–Schwarz inequality, we derive∫ ∞

0
|h′′(x)| dx =

∫ ∞

0
w(x)−

1
2 |h′′(x)|w(x)

1
2 dx ≤ C

1
2
w,0∥h∥w,0 <∞. (27)

In particular, h′(x) = −
∫∞
x h′′(t) dt, for all h ∈ Hw,0. On the other hand, condition (26) cannot be

relaxed in general, as seen by the counter-example of a constant weight function w = 1 and h with

h′′(x) = (1 + x)−
2
3 , which satisfies ∥h∥w,0 <∞ but h′(x) = h′(0) + 1

3(1 + x)
1
3 is not bounded.

The following lemma relates the function sets Hw,δ and the norms (25) for varying w and δ.

For fixed weight function w, varying the shape parameter δ does not affect Hw,δ as a set, and the

norms (25) are equivalent, except for the boundary case δ = 1, and for δ = 0 under some technical

condition, see (28).

Lemma 1

The following hold:

(i) Hw,δ ⊆ Hw̃,δ and ∥h∥w̃,δ ≤ ∥h∥w,δ, for all δ ∈ [0, 1], if w̃ ≤ w

(ii) Hw,δ = Hw,δ̃ and ∥h∥w,δ̃ ≤ max{ δ̃
δ ,

1−δ̃
1−δ}

1
2 ∥h∥w,δ, for all δ, δ̃ ∈ (0, 1)

(iii) Hw,δ ⊂ Hw,1 and ∥h∥w,1 ≤ δ−
1
2 ∥h∥w,δ, for all δ ∈ (0, 1)

(iv) Hw,δ ⊆ Hw,0 and ∥h∥w,0 ≤ (1− δ)−
1
2 ∥h∥w,δ, for all δ ∈ [0, 1)

(v) Hw,0 ⊆ Hw,δ and ∥h∥w,δ ≤ (δCw,1Cw,2 + 1− δ)
1
2 ∥h∥w,0, for all δ ∈ [0, 1], if

Cw,1 = sup
x∈[0,∞)

w(x)
1
2

∫ ∞

x
w(t)−

1
2 dt <∞, and

Cw,2 = sup
x∈[0,∞)

w(x)−
1
2

∫ x

0
w(t)

1
2 dt <∞.

(28)

Proof. (i)–(iv) follow directly from the definition of Hw,δ and the norm (25).

Now assume that (28) holds. Let h ∈ Hw,0, so that h′(x) = −
∫∞
x h′′(t) dt, by (27). Then

h′(x)2 =

(∫ ∞

x
w(t)−

1
4w(t)

1
4h′′(t) dt

)2

≤
(∫ ∞

x
w(t)−

1
2 dt

)(∫ ∞

x
w(t)

1
2h′′(t)2 dt

)
≤ Cw,1w(x)

− 1
2

∫ ∞

x
w(t)

1
2h′′(t)2 dt.

34In a similar vein, for δ = 0, it can be shown that
∫∞
0

(1 + x)w(x)−1 dx < ∞ is a sufficient condition such that∫∞
0
h′(x)2 dx <∞, and thus h′ ∈ H1(I), for h ∈ Hw,0. See footnote 32.
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Hence ∫ ∞

0
h′(x)2w(x) dx ≤ Cw,1

∫ ∞

0

∫ ∞

x
w(x)

1
2w(t)

1
2h′′(t)2 dt dx

= Cw,1

∫ ∞

0

(∫ t

0
w(x)

1
2 dx

)
w(t)−

1
2h′′(t)2w(t) dt

≤ Cw,1Cw,2∥h∥2w,0,

and thus h ∈ Hw,δ, for any δ ∈ [0, 1], which proves (v).

Remark 2

Lemma 1(ii) states that the sets Hw,δ are identical, and the norms ∥ · ∥w,δ equivalent, for a fixed

w and varying δ ∈ (0, 1). Lemma 1(iv) and (v) imply that this extends to δ ∈ [0, 1) if (28) holds.

Condition (28) is satisfied for the exponential weight function w(x) = eαx for any α > 0. Indeed,

in this case, Cw,1 = Cw,2 =
2
α . Condition (28) cannot be relaxed in general, as seen by the counter-

example w(x) = (1 + x)α, which satisfies (26) but not (28) for any α > 1, and h ∈ Hw,0 given by

h′(x) = (1 + x)−
1+α
2 , for which we obtain ∥h∥w,δ = ∞ and thus h /∈ Hw,δ for any δ ∈ (0, 1].

We can characterize the growth rate of functions in Hw,δ as follows.

Lemma 2

Any function h ∈ Hw,δ is point-wise dominated by

|h(x)| ≤

δ−
1
2 ∥h∥w,δ x

1
2 , if δ ∈ (0, 1],

C
1
2
w,0 ∥h∥w,0 x, if δ = 0.

Proof. Assume first that δ ∈ (0, 1]. Using the Cauchy–Schwarz inequality and that w ≥ 1, we

obtain |h(x)| ≤
∫ x
0 |h′(t)|

√
w(t) · 1 dt ≤ δ−

1
2 ∥h∥w,δ x

1
2 , as claimed. If δ = 0, then (27) implies that

|h′(x)| ≤ C
1
2
w,0∥h∥w,0 for all x, which proves the claim.

Lemma 2 implies that the point-wise evaluation h 7→ h(x) acts as a bounded linear functional

on Hw,δ, which confirms that Hw,δ is a RKHS. Its reproducing kernel can be determined as follows.

Lemma 3

Assume that, for any fixed y ≥ 0, there exists a solution ϕ of the linear differential equation

δϕw − (1− δ)(ϕ′w)′ = 1[0,y], (29)

along with the boundary condition ϕ′(0) = 0 if δ ∈ [0, 1), and such that ψ ∈ Hw,δ for ψ(x) =∫ x
0 ϕ(t) dt. Then the reproducing kernel k of Hw,δ satisfies

k(·, y) = ψ. (30)
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In particular, for the boundary cases δ ∈ {0, 1}, we have

k(x, y) =


∫∞
0 (t ∧ x)(t ∧ y)w(t)−1 dt, if δ = 0,∫ x∧y
0 w(t)−1 dt, if δ = 1.

(31)

Proof. Fix y ≥ 0, and let h ∈ Hw,δ with h′(x) = 0 for x > n for some finite n. We obtain, via

integration by parts of the second term if δ ∈ [0, 1),

⟨ψ, h⟩w,δ =

∫ ∞

0
(δψ′(x)h′(x) + (1− δ)ψ′′(x)h′′(x))w(x) dx

=

∫ ∞

0
(δψ′(x)w(x)− (1− δ)(ψ′′w)′(x))h′(x) dx =

∫ ∞

0
1[0,y](x)h

′(x) dx = h(y),

where we used that δψ′w − (1− δ)(ψ′′w)′ = 1[0,y] in view of (29). By Lemma 4, we conclude that

⟨ψ, h⟩w,δ = h(y) for all h ∈ Hw,δ, which is the reproducing kernel property and proves (30).

For the last statement, it follows by inspection that ϕ(t) =
∫∞
t (s∧y)w(s)−1 ds and ϕ = 1[0,y]w

−1

satisfy the assumptions for δ = 0 and δ = 1, respectively. Plugging these in (30), and changing the

order of integration for δ = 0, proves (31).

The following lemma is of independent interest and used in the proof of Lemma 3.

Lemma 4

For any h ∈ Hw,δ there exists a sequence of functions hn ∈ Hw,δ such that h′n(x) = 0 for x > n and

hn → h in Hw,δ, as n→ ∞.

Proof. Let ζ be a smooth function on R such that 0 ≤ ζ(t) ≤ 1, ζ(t) = 1 for t ≤ 1/2, and

ζ(t) = 0 for t > 1. Assume first that δ ∈ (0, 1]. Let h ∈ Hw,δ and define hn(x) =
∫ x
0 h

′(t)ζ(t/n) dt.

Hence h′n(x) = h′(x)ζ(x/n), which is zero for x > n. If h′ is differentiable, we further have

h′′n(x) = h′′(x)ζ(x/n) + h′(x) 1nζ
′(x/n). As ζ and ζ ′ are bounded by some constant Cζ , it is easy to

see that hn ∈ Hw,δ. Further, we have

∥h− hn∥2w,δ =

∫ ∞

0

(
δh′(x)2(1− ζ(x/n))2 + (1− δ)(h′′(x)(1− ζ(x/n))− h′(x)

1

n
ζ ′(x/n))2

)
w(x) dx

≤ 2

∫ ∞

n/2

(
δh′(x)2 + (1− δ)h′′(x)2

)
w(x) dx+

2(1− δ)C2
ζ

n2

∫ ∞

0
h′(x)2w(x) dx.

Because the last factor
∫∞
0 h′(x)2w(x) dx ≤ 1

δ∥h∥
2
w,δ, we conclude that ∥h−hn∥w,δ → 0, as n→ ∞.

Now assume that δ = 0. Let h ∈ Hw,0 and this time define hn ∈ Hw,0 by h
′
n(x) = −

∫∞
x h′′(t)ζ(t/n) dt.

Then h′′n(x) = h′′(x)ζ(x/n) and h′n(x) are zero for x > n. We further have

∥h− hn∥2w,0 =

∫ ∞

0
h′′(x)2(1− ζ(x/n))2w(x) dx ≤

∫ ∞

n/2
h′′(x)2w(x) dx,

which converges to zero, as n→ ∞.
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We end this section with a lemma that gives conditions on w such that the functions in Hw,δ

be continuously extendable to [0,∞]. This will be used in Section A.5 below.

Lemma 5

Assume that either δ ∈ (0, 1] and (26) holds, or that δ = 0 and

Cw,4 =

∫ ∞

0
(1 + x2)w(x)−1dx <∞. (32)

Then any function h ∈ Hw,δ satisfies
∫∞
0 |h′(x)| dx < ∞, and thus admits a finite limit h(∞) =

limx→∞ h(x). In particular, h is bounded.

Proof. Assume first that δ ∈ (0, 1]. Using the Cauchy–Schwarz inequality, we derive
∫∞
0 |h′(x)|dx =∫∞

0 w(x)−
1
2 |h′(x)|w(x)

1
2 dx ≤ C

1
2
w,0δ

− 1
2 ∥h∥w,δ <∞ by (26). If δ = 0, we use the stronger assumption

(32) and obtain
∫∞
0 |h′(x)|dx ≤

∫∞
0

∫∞
x |h′′(t)| dt dx =

∫∞
0 tw(t)−

1
2 |h′′(t)|w(t)

1
2 dt ≤ C

1
2
w,4∥h∥w,0 <

∞. In either case, we obtain that h(x) =
∫ x
0 h

′(t)dt converges to a finite limit as x → ∞, as

claimed.

A.3 Closed-Form Kernel Expressions: Exponential Weight Function

We now provide closed-form expressions for the reproducing kernel for the important case of an

exponential weight function w(x) = eαx for some α ≥ 0, which obviously satisfies (26) and (32) if

α > 0. We denote by Hα,δ the corresponding RKHS and by ∥ · ∥α,δ the norm (25), in accordance

with (2).

Lemma 6

Let w(x) = eαx for some α > 0. The reproducing kernel of Hα,δ is given by (9)–(11) according to

Cases (iii)–(v) in Theorem 1.

Proof. Expressions (9) and (11) follow directly integrating the right hand side of (31).

It remains to prove (10). Thereto fix y ≥ 0. Equation (29) becomes a non-homogeneous linear

differential equation with constant coefficients for ϕ,

δϕ(t)− (1− δ)αϕ′(t)− (1− δ)ϕ′′(t) = 1[0,y](t)e
−αt.

This can be solved by the variation of constants method. The characteristic equation, δ/(1− δ)−
αt− t2 = 0, has roots t = ℓ1, ℓ2. Along with the boundary conditions stated in Lemma 3, this yields

ϕ(t) =
1

(1− δ)
√
D

(
−ℓ1e−ℓ2t

∫ ∞

0
(s ∧ y)e−ℓ2s ds+ e−ℓ2t

∫ t

0
1[0,y](s)e

−ℓ1s ds+ e−ℓ1t

∫ ∞

t
1[0,y](s)e

−ℓ2s ds

)

where we use the identities α = ℓ1 + ℓ2 and
√
D = ℓ2 − ℓ1. In view of (30), using the identity
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δ/(1− δ) = −ℓ1ℓ2 and integration by parts, we derive

δ
√
Dk(x, y) = δ

√
D

∫ x

0
ϕ(t) dt

= ℓ21

(
1− e−ℓ2x

)∫ ∞

0
(s ∧ y)e−ℓ2s ds

+

[
e−ℓ2t

∫ t

0
1[0,y](s)ℓ1e

−ℓ1s ds

]x
0

−
∫ x

0
e−ℓ2t1[0,y](t)ℓ1e

−ℓ1tdt

+

[
e−ℓ1t

∫ ∞

t
1[0,y](s)ℓ2e

−ℓ2s ds

]x
0

+

∫ x

0
e−ℓ1t1[0,y](t)ℓ2e

−ℓ2tdt

=
ℓ21
ℓ22

(
1− e−ℓ2x

)(
1− e−ℓ2y

)
+ e−ℓ2x

(
1− e−ℓ1(x∧y)

)
− ℓ1
α

(
1− e−α(x∧y)

)
+ e−ℓ1x

(
e−ℓ2(x∧y) − e−ℓ2y

)
−
(
1− e−ℓ2y

)
+
ℓ2
α

(
1− e−α(x∧y)

)
=
ℓ21
ℓ22

(
1− e−ℓ2x

)(
1− e−ℓ2y

)
+ e−ℓ2x + e−ℓ2y − 1 +

√
D

α

(
1− e−α(x∧y)

)
− e−ℓ1(x∧y)−ℓ2(x∨y),

(33)

where we used the identity −e−ℓ2xe−ℓ1(x∧y) + e−ℓ1x
(
e−ℓ2(x∧y) − e−ℓ2y

)
= −e−ℓ1(x∧y)−ℓ2(x∨y) in the

last equality. Dividing both sides of (33) by δ
√
D and some algebraic simplifications prove (10).

This completes the proof.

A.3.1 Constant Weight Function

We next study the special case of constant weight function w = 1, which amounts to set α = 0.

Accordingly, we denote by H0,δ the corresponding RKHS.

Remark 3

Note that H0,δ is only a well-defined RKHS for δ ∈ (0, 1], which we henceforth assume whenever we

deal with H0,δ. This is because the constant w = 1 does not satisfy (26), as explained in Remark 1.

This is also reflected by the property that k(x, x) → ∞ as α → 0 for the kernel (9), as can easily

be verified.

Lemma 7

Let w = 1 be constant. The reproducing kernel of H0,δ is given by (7)–(8) according to Cases (i)–(ii)

in Theorem 1. If δ = 0 then H0,δ is not a RKHS and there exists no reproducing kernel.

Proof. We obtain the expressions on the right hand side of (7) and (8) by letting α → 0 in (10)

and (11), respectively. It is then easily verified by Lemma 3 that these are indeed the desired

reproducing kernels. The last statement follows from Remark 3.
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A.3.2 Proof of Theorem 2

Theorem 2 follows from (24) and the structural properties of Hα,δ proved in Lemma 8 below. More

specifically, Case (i) Fama–Bliss follows from Lemma 8(ii). Case (ii) NSS follows from Lemma 8(i).

Case (iii) Smith–Wilson follows from Lemma 8(i) and (iii), and Lemma 1(iv).

Lemma 8

Let α, α′ ≥ 0, γ > 0 and δ ∈ [0, 1]. The following hold:

(i) If g(x) = e−
∫ x
0 f(z) dz for some bounded and absolutely continuous function f such that

limx→∞
1
x

∫ x
0 f(z) dz = γ and f ′ is either bounded or satisfies

∫∞
0 f ′(x)2eαx dx < ∞. Then

h = g − 1 ∈ Hα,δ if α < 2γ.

(ii) If δ = 1 then property (i) holds under the weaker assumption that f is bounded measurable

and limx→∞
1
x

∫ x
0 f(z) dz = γ.

(iii) Let h ∈ Hα,δ and define hγ(x) = e−γxh(x). Then hγ ∈ Hα′,δ if α′ < α+ 2γ.

Proof. (i): Differentiation gives h′ = g′ = −fg and h′′ = (−f ′+f2)g. By assumption, for any ϵ > 0

there exists some finite xϵ such that 1
x

∫ x
0 f(z) dz > γ − ϵ/2, and hence g(x)2eαx < e−(2γ−ϵ−α)x,

for all x > xϵ. In particular, g is bounded. Hence, under either assumption on f ′, we find that

∥h∥α,δ <∞ if α < 2γ − ϵ. As ϵ > 0 was arbitrary, this proves the claim.

(ii): This follows from the same arguments as in item (i).

(iii): Differentiation gives h′γ(x) = e−γx(h′(x) − γh(x)) and h′′γ(x) = e−γx(h′′(x) − 2γh′(x) +

γ2h(x)). In view of Lemma 2, the function h grows at most like x (if α > 0) or grows at most like

x
1
2 (if α = 0 and thus δ ∈ (0, 1] in view of Remark 3), respectively.35 Hence in either case we obtain

that ∥hγ∥α′,δ <∞ if α′ < α+ 2γ.

A.3.3 Consistency with Arbitrage-Free Dynamic Term Structure Models

Our framework contains all discount curves that are generated by stochastic models of the Heath,

Jarrow, and Morton (1992) type. More specifically, (Filipović, 2001, Section 5.2) provides technical

assumptions on the forward curve volatility asserting that the forward curve ft prevailing at any

time t ≥ 0 satisfies ft−ft(0) ∈ Hα,1, whenever the initial forward curve f0 does so, f0−f0(0) ∈ Hα,1,

for a given α > 0.36 Moreover, the infinite-maturity forward rates do not move, ft(∞) = f0(∞),

which is consistent with a celebrated theorem of Dybvig, Ingersoll, and Ross (1996) stating that long

forward rates can never fall.37 Lemma 8(i) and (24) then imply that the corresponding discount

curves gt lie in Gα,δ for all t ≥ 0 if α < 2f0(∞). Examples include the short rate models of

Vasicek (1977), Cox, Ingersoll, and Ross (1985), and their extensions in Hull and White (1990), see

(Filipović, 2001, Sections 7.4.1–7.4.2).

35In view of Lemma 5, functions in Hα,δ are actually bounded, for α > 0.
36In view of Lemma 5, that means that ft absolutely continuous, admits a finite limit ft(∞) = limx→∞ ft(x), and

f ′
t satisfies

∫∞
0
f ′
t(x)

2eαx dx <∞.
37See also (Filipović, 2009, Lemma 7.3).
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A.4 Gaussian Process Perspective

As in Section 2.4, we assume here that the discount curve g : [0,∞) → R is a Gaussian process

with mean function m and covariance kernel k. For more background and applications of Gaussian

processes we refer to, e.g., Rasmussen and Williams (2006).

As g(0) = 1, the mean function and kernel must satisfy m(0) = 1 and k(0, 0) = 0. The mean

function m can be interpreted as a prior for the discount curve. E.g., m could be the discount

curve estimated on a previous business day. An alternative prior could be m(x) = e−rx for some

constant prior interest rate r.

We also assume that the errors ϵi in the pricing equation (1) are modeled as independent

centered Gaussian random variables with variance parameters σ2i ≥ 0, that is ϵ ∼ N (0,Σϵ) with

Σϵ = diag(σ21, . . . , σ
2
M ). This is intimately related to the kernel ridge regression problem (15) with

variance weights ωi = λ/σ2i , as we shall see now. In particular, an exact pricing of security i

amounts to a zero variance of ϵi, that is, σ
2
i = 0.

Indeed, for n arbitrary cash flow dates z = (z1, . . . , zn)
⊤, we have that g(z) and P are jointly

Gaussian distributed as(
g(z)

P

)
∼ N

((
m(z)

Cm(x)

)
,

(
k(z, z⊤) k(z,x⊤)C⊤

Ck(x, z⊤) CKC⊤ +Σϵ

))
. (34)

Here, as before, we write k(z,x⊤) for the n×N matrix with entries k(zi, xj), and similarly k(z, z⊤),

m(z), so that K = k(x,x⊤). As in Theorem A.1, we henceforth assume that either I1 = ∅ or

CI1KC⊤
I1 is invertible, so that the M ×M -matrix CKC⊤ +Σϵ is invertible.

Bayesian updating in (34) implies that the conditional distribution of g, given the observed

prices P , is then still Gaussian with posterior mean function (12) and posterior variance given by

the posterior kernel (13). We thus have proved the following lemma, as desired.

Lemma 9

Suppose the kernel k and the prior mean function m = p are as in Section A.1, and Σ = Λ as given

in Theorem A.1. Then the posterior mean function in Equation (12) coincides with the kernel ridge

regression estimator ḡ in Theorem A.1.

A.4.1 Proof of Theorem 3

Theorem 3 now follows from the above discussion and Lemma 9, for the constant prior curve p = 1

in (14), and noting (24).

A.4.2 Scaling Invariance of the Posterior Mean Function

We end this section with an interesting and useful observation. Inspection shows that the posterior

mean function (12) is invariant with respect to scaling the kernel k and the pricing error variance Σ

by any common factor s > 0. That is, if we replace k and Σ by k̃ = sk and Σ̃ = sΣ, respectively, the
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scalings on the right hand side of (12) offset. On the other hand, the scaling obviously impacts the

prior and posterior variance of the Gaussian process g. From (34) we obtain the prior log-likelihood

function of s and all else equal, given the observed prices P ,

L(s) = −q2
1

s
− M

2
log(s)− q1

for q2 = 1
2(P − Cm(x))⊤(CKC⊤ + Σ)−1(P − Cm(x)), q1 = 1

2 log |CKC⊤ + Σ| + M
2 log(2π). We

can now calibrate the scaling factor s by maximizing the log-likelihood. Remarkably, this is given

in closed form. Indeed, by differentiation, it is readily verified that L(s) attains its maximum at

s̄ =
2q2
M

. (35)

Note that in terms of the kernel ridge regression problem (15), the scaling amounts to replace

k by k̃ = sk, as above, and λ by λ̃ = sλ. Indeed, the RKHS H̃ corresponding to the kernel k̃

coincides with H as a set, H̃ = H, whereas the squared norms are related by ∥h∥2H̃ = 1
s∥h∥

2
H for

any function h ∈ H.38

A.5 Infinite-Maturity Yield

In this section, we assume that the RKHS H consists of functions x 7→ h(x) that are defined on

the closure [0,∞] of [0,∞), including the point x = ∞. This is tantamount to assuming that the

reproducing kernel k is can be extended to [0,∞] × [0,∞], see (Paulsen and Raghupathi, 2016,

Corollary 5.8). We also assume that the prior curve x 7→ p(x) is defined on [0,∞]. In this case, all

results of the previous sections literally carry over, as we never assumed that the last cash flow date

xN is finite. In this setting, we now study the infinite-maturity yield. We do so first for the general

case and then derive more explicit results for the weighted Sobolev type space with exponential

weight function.

A.5.1 General Case

We let ḡ = p+ h̄ : [0,∞] → R be the optimal discount curve given in Theorem A.1, and denote by

ȳ(x) = − 1
x log ḡ(x) the corresponding zero-coupon yield curve.

Lemma 10

Assume that there exists a positive function q and parameter r > 0 such that the following limits

exist,

lim
x→∞

1

x
log q(x) = 0, (36)

lim
x→∞

(p(x)− p(∞))q(x)erx = γ0, (37)

lim
x→∞

(k(x, xj)− k(∞, xj))q(x)e
rx = γj , j = 1, . . . , N, (38)

38Indeed, this can easily be seen for functions of the form h =
∑n

j=1 βjk(·, xj).
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for some real γ0, . . . , γN such that γ0 +
∑N

j=1 βjγj > 0. Then limx→∞ ȳ(x) = r if and only if

ḡ(∞) = 0.

Proof. By assumption (36), we have q(x)erx → ∞ as x → ∞. Hence, (37) and (38) imply

limx→∞ ḡ(x) = ḡ(∞). Hence limx→∞ ȳ(x) = r > 0 only if ḡ(∞) = 0, which proves the sufficiency

of the statement.

To prove necessity, we now assume that ḡ(∞) = 0. Then we can write ḡ(x) = ḡ(x) − ḡ(∞) =

p(x) − p(∞) +
∑N

j=1(k(x, xj) − k(∞, xj))βj , and thus limx→∞ ḡ(x)q(x)erx = γ0 +
∑N

j=1 βjγj > 0.

We obtain

ȳ(x) =
− log(ḡ(x)q(x)erx)

x
+

log q(x)

x
+ r,

which converges to r. This completes the proof of the lemma.

In order to identify the infinite-maturity yield, in view of Lemma 10, it is useful to impose the

constraint ḡ(∞) = 0 in Problem (15). This can be done by introducing a synthetic zero-coupon

bond with infinite maturity, as explained as a special case of the next lemma. We denote by

KN = (k(x1, xN ), . . . , k(xN , xN )) the N -th row of K.

Lemma 11

Assume ωM = ∞ and CM = (0, . . . , 0, 1), which corresponds to the exact pricing of the zero-coupon

bond with maturity xN ≤ ∞ and face value 1, whose present value is PM . Assume further that the

first M − 1 securities have no cash flow at xN , i.e., CiN = 0 for all i < M .

Then the last component of β in (18) is given by

βN =
PM − g̃(xN )

s
(39)

where g̃(xN ) = p(xN )+KN C̃
⊤(C̃KC̃⊤+Λ̃)−1(P̃ − C̃p(x)) is the value at xN of the discount curve

g̃ estimated based on the first M − 1 securities with prices P̃ = (P1, . . . , PM−1)
⊤ and (M − 1)×N -

cash flow matrix C̃ given by C̃⊤ = (C⊤
1 , . . . , C

⊤
M−1), for Λ̃ = diag(λ/ω1, . . . , λ/ωM−1), and where

s > 0 is given in (40).

If xN <∞, this corresponds to fixing an exogenous target zero-coupon yield yN for maturity xN ,

which is encoded by setting PM = e−xNyN , so that ḡ(xN ) = e−xNyN . If xN = ∞, we set PM = 0,

so that ḡ(∞) = 0.

Proof. Using blockwise inversion of M = CKC⊤ + Λ =

(
C̃KC̃⊤ + Λ̃ C̃K⊤

N

KN C̃
⊤ k(xN , xN )

)
in (18) gives

the M -th row of M−1 by (−s−1KN C̃
⊤(C̃KC̃⊤ + Λ̃)−1, s−1), for the Schur complement

s = k(xN , xN )−KN C̃
⊤(C̃KC̃⊤ + Λ̃)−1C̃K⊤

N , (40)

which is positive, s > 0, as M is invertible. Hence βN = −s−1KN C̃
⊤(C̃KC̃⊤+Λ̃)−1(P̃ − C̃p(x))+

s−1(PM − p(xN )), which proves the claim.
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A.5.2 Weighted Sovolev Type Space with Exponential Weight Function

The weighted Sobolev type space H = Hα,δ with exponential weight function w(x) = eαx for any

α > 0 obviously satisfies (26) and (32), so that Lemma 5 applies. As for the identification of the

infinite-maturity yield in the case of an exponential weight function we have the following result.

Theorem A.2 (Identification of infinite-maturity yield and positivity of discount curve)

Let w(x) = eαx for some α > 0, and include a synthetic zero-coupon bond with infinite maturity,

xN = ∞, which is exactly priced as in Lemma 11 so that ḡ(∞) = 0. Then the following hold:

(i) Let r > 0 be a parameter and assume that either

(a) r < α, and the limit (37) exists for q = 1 and is finite and positive, γ0 > 0; or

(b) r ≥ α, and the limit (37) exists for

q(x) =

(1 + x)−1, if δ = 0,

1, if δ ∈ (0, 1],

and is finite and non-negative, γ0 ≥ 0, and that βN <∞.

Then the infinite-maturity yield exists and is equal to limx→∞ ȳ(x) = α ∧ r.

(ii) Assume that the prior curve is constant, p = 1, that βN ≤ 0, and that ḡ(xN−1) > 0 for the

largest finite maturity xN−1. Then ḡ(x) > 0 for all finite x > xN−1.

Proof. Part (i) follows from combining Lemmas 10, 11 and 12. Part (ii) follows from the explicit

expressions (43)–(45), noting that ḡ(x) =
∑N

j=1(k(x, xj)− k(∞, xj))βj by assumption.

The assumptions in Theorem A.2 arguably are abstract. The following examples serve as

illustration. Case (i)a is satisfied for the prior curve p(x) = e−rx. Case (i)b is satisfied for the

constant prior curve, p = 1, or p(x) = e−αx, while the sign of βN has to be computed case by

case.39

While Theorem A.2(i) implies that there exists some z0 such that ḡ(x) > 0 for all finite x > z0,

it does not guarantee that ḡ(x) > 0 for all finite x > xN−1, for the largest finite cash flow date

xN−1. A sufficient condition is therefore given in Theorem A.2(ii).

Lemma 12

Let w(x) = eαx for some α > 0, and assume that xN = ∞. Then the following hold:

(i) If δ = 0 then the kernel (9) satisfies (38) for the function q(x) = (1 + x)−1,

lim
x→∞

(k(x, xj)− k(∞, xj))(1 + x)−1eαx =

0, j < N,

− 1
α2 , j = N.

(41)

39The sign of βN coincides with the sign of −g̃(xN ) in (39). But this is of theoretical rather than practical interest.
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(ii) If δ ∈ (0, 1] then the kernels (10) and (11) satisfy (38) for the constant function q = 1,

lim
x→∞

(k(x, xj)− k(∞, xj))e
αx =

0, j < N,

− 1
αδ , j = N.

(42)

Proof. Fix y ≥ 0. For the kernel (9), we derive

k(x, y)− k(∞, y) =

− y
α2 e

−αx, if x > y,

−
(

x
α2 + 2

α3

)
e−αx, if y = ∞,

(43)

which proves (41). For the kernel (10), we derive

k(x, y)− k(∞, y) =


(

α
δℓ22

+ 1
δ
√
D

(
ℓ21
ℓ22
e−ℓ2y − e−ℓ1y

))
e−ℓ2x, if x > y,

α
δℓ22

e−ℓ2x − 1
αδ e

−αx, if y = ∞,
(44)

which proves (42) for δ ∈ (0, 1). Similarly, for the kernel (11), we derive

k(x, y)− k(∞, y) =

0, if x > y,

− 1
αe

−αx, if y = ∞,
(45)

which proves (42) for δ = 1, and thus completes the proof.

Remark 4

For the same reason as mentioned in Remark 3, Lemma 5 does not apply for the Sobolev type space

H = H0,δ with constant weight function, w = 1, for any δ ∈ (0, 1]. Indeed, the unbounded function

h(x) = (1 + x)
1
4 − 1 belongs to H0,δ. While being consistent with Lemma 2, this example shows

that the functions in H0,δ cannot be extended to [0,∞] in general. In particular, we cannot impose

the constraint ḡ(∞) = 0, and there is no way to identify the infinite-maturity yield as we did in

Theorem A.2 for the exponential weight function with α > 0.

A.6 Implementation

We provide the specification details of the implementation. This includes the choice of pricing error

weights and a scale-normalization of the smoothness parameter.

A.6.1 Pricing Error Weights

Our objective function minimizes duration weighted pricing errors, which corresponds up to first

order to yield pricing errors. This is the same weight as used among others by Gürkaynak, Sack,

and Wright (2007). Here we provide further details. The yield to maturity (YTM) of bond i equals

the root Yi = y of Pi = Πi(y), where we define the discounted cash flows for a given yield as
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Πi(y) =
∑N

j=1Cije
−yxj . The modified duration of bond i measures its sensitivity to YTM changes

and is defined as

Di = − 1

Pi
Π′

i(Yi) =
1

Pi

N∑
j=1

Cijxje
−Yixj .

Note that both, Yi and Di, can be readily derived from market data. The YTM corresponding to

the fundamental value of bond i is given as the root y = Y g
i of Πi(y) = P g

i . A Taylor expansion of

Πi(y) at y = Yi gives, up to first order,

Pi − P g
i︸ ︷︷ ︸

pricing error ϵi

= −(Πi(Y
g
i )−Πi(Yi)) = −Π′

i(Yi)(Y
g
i − Yi) + o(Y g

i − Yi) ≈ DiPi (Y
g
i − Yi)︸ ︷︷ ︸

YTM error

. (46)

Dividing both sides of (46) by DiPi suggests to use weights ωi as shown in (4).

As an alternative, we also report the relative pricing error. This corresponds to the particular

choice of weights ωi = 1
M

1
P 2
i
, so that the weighted mean squared pricing error in the objective

function (3) equals the relative pricing mean squared error,

M∑
i=1

ωi(Pi − P g
i )

2 =
1

M

M∑
i=1

(
Pi − P g

i

Pi

)2

.

A.6.2 Scale-Normalization of λ

In order to have a meaningful scale and make the smoothness parameter λ comparable across the

time-series of bonds, we normalize it by the largest maturity for a given day. More specifically, we

replace λ in the objective function (3) by λ/(365xN ), where xN is the largest maturity in years.

The intuition behind is that on any given day the effective trade-off between pricing errors and

curve smoothness takes place on the interval [0, xN ]. Beyond this time horizon, for x > xN the first

and second derivatives of the discount curve, g′(x)2 and g′′(x)2, are minimized without restrictions

and thus close to zero. In other words, the effective integration domain is [0, xN ] in the smoothness

measure (2). The additional scaling of xN by 365 is convenient, as it turns out to be essentially

optimal such that our baseline model uses λ = 1. That is, the factor in front of the smoothness

measure ∥g∥2α,δ is 1/(365xN ).

51



B Empirical Results

In this appendix we collect additional empirical results.

B.1 Parameter Selection

Figure A.1: Cross-validation duration weighted pricing RMSE for λ and α
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This figure shows the cross-validation duration weighted pricing RMSE in BPS for our KR method as a function
of the smoothness parameter λ and maturity weight α. The tension parameter is set to δ = 0. The results are
calculated using quarterly data from June 1961 to December 2020.
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Figure A.2: Cross-validation relative pricing RMSE for λ and α

0.001 0.01 0.1 0.5 1 5 10 50 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

39.8 32.9 28.3 27.0 26.9 27.6 28.5 35.3 42.9

38.9 32.3 27.9 26.6 26.5 27.0 27.8 33.9 40.8

38.2 31.8 27.5 26.4 26.2 26.6 27.2 32.7 38.9

37.5 31.3 27.2 26.2 26.0 26.3 26.8 31.7 37.4

36.9 30.9 27.0 26.0 25.9 26.2 26.7 31.2 36.5

36.4 30.6 26.9 26.0 25.9 26.3 26.8 31.5 36.8

36.0 30.3 26.8 26.0 26.0 26.6 27.3 32.5 38.1

35.6 30.1 26.7 26.1 26.2 27.2 28.2 34.4 41.1

35.3 30.0 26.8 26.3 26.5 28.0 29.4 37.4 46.1

35.1 29.9 26.8 26.6 27.0 29.2 31.1 42.0 53.5

30

35

40

45

50

This figure shows the cross-validation relative pricing RMSE in BPS for our KR method as a function of the
smoothness parameter λ and maturity weight α. The tension parameter is set to δ = 0. The results are calculated
using quarterly data from June 1961 to December 2020.

Figure A.3: Cross-validation duration weighted pricing RMSE for λ and δ
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This figure shows the cross-validation duration weighted pricing RMSE in BPS for our KR method as a function
of the smoothness parameter λ and tension parameter δ. The maturity weight is set to α = 0.05. The results are
calculated using quarterly data from June 1961 to December 2020.
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Figure A.4: Cross-validation relative pricing RMSE for λ and δ
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This figure shows the cross-validation relative pricing RMSE in BPS for our KR method as a function of the
smoothness parameter λ and tension parameter δ. The maturity weight is set to α = 0.05. The results are
calculated using quarterly data from June 1961 to December 2020.
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Figure A.5: KR yield curve estimates as a function of parameters
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(a) Varying λ, fixed α = 0.05 and δ = 0
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(b) Varying α, fixed λ = 1 and δ = 0
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(c) Varying δ, fixed α = 0.05 and λ = 1

This figure shows yield curve estimates with KR for various combination of parameters on the representative example
dates 1961-06-30 (top panel), 1986-06-30 (mid panel), and 2013-12-31 (bottom panel). The first column varies the
smoothness parameter λ for fixed values α = 0.05 and δ = 0. The second column varies the maturity weight α for
fixed values λ = 1 and δ = 0. The third columns varies the tension parameter δ for fixed values λ = 1 and α = 0.05.
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B.2 Comparison Study

Table A.1: In-sample pricing comparison

Price Price YTM YTM YTM YTM YTM YTM YTM YTM YTM YTM YTM YTM
Dur.-w. Relati. Aveg. Mat.-w. <3M 3M to 1Y 1Y to 2Y 2Y to 3Y 3Y to 4Y 4Y to 5Y 5Y to 7Y 7Y to 10Y 10Y to 20Y >20Y

Sample 6/1961-12/2013 (including FB)

Full Data

KR 18.89 17.54 18.91 9.35 43.60 8.73 8.01 5.62 5.05 6.16 6.25 6.04 3.24 0.78
NSS 30.99 27.56 31.02 14.41 68.26 13.94 10.27 7.54 6.86 8.23 8.21 10.12 7.19 3.45
GSW 35.43 28.05 35.47 15.49 76.55 16.88 10.21 7.72 6.65 7.93 7.95 10.21 7.29 3.48
LW 20.22 19.27 20.24 10.14 46.47 9.83 8.47 5.75 5.13 6.32 6.36 7.46 4.79 0.77
FB 18.91 28.68 18.95 11.35 38.48 10.26 10.40 9.99 9.09 8.49 7.99 8.17 9.42 1.21

3-Month Filter

KR 7.98 18.99 8.00 5.54 8.73 8.01 5.62 5.05 6.16 6.25 6.04 3.24 0.78
NSS 11.52 29.71 11.54 8.42 13.94 10.27 7.54 6.86 8.23 8.21 10.12 7.19 3.45
GSW 13.22 29.90 13.26 8.70 16.88 10.21 7.72 6.65 7.93 7.95 10.21 7.29 3.48
LW 8.67 20.90 8.70 6.10 9.83 8.47 5.75 5.13 6.32 6.36 7.46 4.79 0.77
FB 10.75 31.10 10.80 8.33 10.26 10.40 9.99 9.09 8.49 7.99 8.17 9.42 1.21

KR Filter

KR 9.51 16.27 9.52 6.41 18.11 7.73 7.18 5.05 4.74 5.57 5.91 5.81 3.18 0.78
NSS 22.61 26.51 22.62 11.75 45.91 13.09 9.31 6.91 6.50 7.56 7.82 9.88 7.13 3.45
GSW 27.13 26.93 27.17 12.84 54.43 16.16 9.27 7.03 6.25 7.20 7.49 9.93 7.21 3.48
LW 11.05 18.01 11.06 7.26 21.75 8.85 7.57 5.18 4.81 5.72 5.98 7.22 4.73 0.77
FB 10.44 27.52 10.47 8.37 13.82 9.07 9.28 9.30 8.74 7.84 7.39 7.76 9.32 1.21

NSS Filter

KR 10.31 16.59 10.31 6.73 20.38 8.05 7.40 5.06 4.78 5.58 6.12 5.93 3.22 0.78
NSS 19.32 26.62 19.34 11.12 38.96 13.23 9.51 6.92 6.53 7.55 8.04 9.86 7.14 3.45
GSW 24.28 27.06 24.31 12.33 48.69 16.21 9.46 7.04 6.29 7.19 7.76 9.93 7.23 3.48
LW 11.67 18.25 11.68 7.52 23.55 9.12 7.81 5.19 4.84 5.72 6.21 7.22 4.76 0.77
FB 11.18 27.79 11.21 8.73 16.14 9.49 9.62 9.31 8.79 7.84 7.76 7.83 9.33 1.21

Sample 6/1961-12/2020 (excluding FB)

Full Data

KR 17.27 16.44 17.28 8.58 40.66 8.16 7.27 5.11 4.57 5.55 5.56 5.22 2.85 0.85
NSS 28.36 27.83 28.38 13.42 63.72 13.54 9.33 6.91 6.25 7.45 7.38 8.89 7.02 3.67
GSW 32.24 28.02 32.27 14.36 71.04 16.15 9.28 7.07 6.06 7.19 7.13 8.96 7.05 3.67
LW 18.44 18.15 18.46 9.28 43.19 9.14 7.68 5.22 4.64 5.69 5.66 6.46 4.29 0.81

3-Month Filter

KR 7.25 17.75 7.27 5.02 8.16 7.27 5.11 4.57 5.55 5.56 5.22 2.85 0.85
NSS 10.75 29.98 10.78 7.83 13.54 9.33 6.91 6.25 7.45 7.38 8.89 7.02 3.67
GSW 12.23 29.88 12.26 8.06 16.15 9.28 7.07 6.06 7.19 7.13 8.96 7.05 3.67
LW 7.87 19.65 7.89 5.51 9.14 7.68 5.22 4.64 5.69 5.66 6.46 4.29 0.81

KR Filter

KR 8.65 15.34 8.66 5.84 16.72 7.23 6.52 4.60 4.30 5.03 5.26 5.03 2.81 0.85
NSS 20.74 26.98 20.76 11.00 43.20 12.79 8.48 6.35 5.93 6.86 7.03 8.69 6.98 3.67
GSW 24.70 27.10 24.73 11.95 50.72 15.50 8.45 6.46 5.71 6.54 6.73 8.73 7.01 3.67
LW 10.01 17.07 10.02 6.59 19.95 8.23 6.88 4.71 4.36 5.16 5.33 6.26 4.25 0.81

NSS Filter

KR 9.40 15.61 9.41 6.16 19.04 7.54 6.73 4.62 4.33 5.04 5.44 5.13 2.83 0.85
NSS 17.79 27.06 17.80 10.40 36.73 12.91 8.66 6.36 5.96 6.85 7.23 8.67 6.99 3.67
GSW 22.12 27.20 22.15 11.46 45.33 15.54 8.61 6.47 5.75 6.54 6.97 8.73 7.01 3.67
LW 10.62 17.28 10.63 6.86 21.89 8.50 7.10 4.73 4.39 5.16 5.53 6.26 4.27 0.81

This table compares the in-sample pricing results for different methods. We report the duration weighted and
relative pricing RMSE and average and maturity bucket weighted yield RMSE. In addition, we list the yield RMSE
for ten different maturity buckets. The results are shown with and without filters for the short and the long sample.
The best model performance is indicated in bold. All results are in basis points (BPS).
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Table A.2: Out-of-sample pricing comparison

Price Price YTM YTM YTM YTM YTM YTM YTM YTM YTM YTM YTM YTM
Dur.-w. Relati. Aveg. Mat.-w. <3M 3M to 1Y 1Y to 2Y 2Y to 3Y 3Y to 4Y 4Y to 5Y 5Y to 7Y 7Y to 10Y 10Y to 20Y >20Y

Sample 6/1961-12/2013 (including FB)

Full Data

KR 17.55 29.53 17.56 10.95 33.96 10.24 10.23 8.41 8.05 8.98 9.03 8.87 6.85 4.83
NSS 29.49 36.34 29.52 15.24 58.81 14.62 11.68 9.52 9.19 10.52 10.44 11.74 9.87 6.02
GSW 33.72 36.54 33.77 16.17 66.86 17.16 11.38 9.44 8.89 10.18 10.12 11.77 9.87 6.02
LW 18.70 30.89 18.72 11.60 36.53 11.11 10.55 8.51 8.09 9.09 9.14 10.04 8.09 4.82
FB 17.63 38.10 17.67 12.56 29.52 11.25 12.61 12.25 11.45 11.06 10.34 10.67 11.47 5.00

3-Month Filter

KR 10.25 31.82 10.27 8.39 10.24 10.23 8.41 8.05 8.98 9.03 8.87 6.85 4.83
NSS 12.99 39.14 13.01 10.40 14.62 11.68 9.52 9.19 10.52 10.44 11.74 9.87 6.02
GSW 14.41 39.01 14.45 10.54 17.16 11.38 9.44 8.89 10.18 10.12 11.77 9.87 6.02
LW 10.79 33.33 10.81 8.83 11.11 10.55 8.51 8.09 9.09 9.14 10.04 8.09 4.82
FB 12.52 41.20 12.57 10.68 11.25 12.61 12.25 11.45 11.06 10.34 10.67 11.47 5.00

KR Filter

KR 11.25 28.57 11.25 8.91 17.20 9.46 9.48 7.84 7.74 8.36 8.73 8.69 6.74 4.83
NSS 23.78 35.50 23.80 13.45 44.65 13.99 10.81 8.91 8.82 9.85 10.13 11.53 9.77 6.02
GSW 28.07 35.61 28.10 14.39 52.92 16.64 10.50 8.80 8.49 9.46 9.78 11.53 9.76 6.02
LW 12.51 29.95 12.52 9.60 20.25 10.34 9.75 7.94 7.78 8.47 8.84 9.87 7.99 4.82
FB 12.18 37.15 12.21 10.59 14.24 10.31 11.69 11.59 11.10 10.40 9.92 10.32 11.36 5.00

NSS Filter

KR 12.01 28.82 12.02 9.24 19.57 9.72 9.78 7.86 7.75 8.42 8.81 8.80 6.84 4.83
NSS 20.55 35.53 20.57 12.83 38.00 14.10 11.12 8.92 8.83 9.87 10.18 11.44 9.77 6.02
GSW 25.33 35.65 25.36 13.89 47.57 16.66 10.83 8.80 8.50 9.49 9.85 11.45 9.77 6.02
LW 13.12 30.11 13.13 9.87 22.19 10.56 10.07 7.96 7.78 8.51 8.91 9.79 8.05 4.82
FB 12.92 37.32 12.95 10.93 16.68 10.67 12.07 11.59 11.10 10.45 10.09 10.33 11.30 5.00

Sample 6/1961-12/2020 (excluding FB)

Full Data

KR 16.04 29.94 16.06 10.15 31.32 9.51 9.37 7.81 7.52 8.38 8.40 8.06 6.38 4.79
NSS 27.01 37.90 27.03 14.31 54.83 14.13 10.71 8.80 8.54 9.78 9.69 10.66 9.65 6.27
GSW 30.71 37.87 30.75 15.12 61.95 16.38 10.45 8.74 8.28 9.48 9.41 10.68 9.60 6.24
LW 17.06 31.45 17.08 10.74 33.59 10.28 9.66 7.89 7.55 8.48 8.50 9.09 7.59 4.78

3-Month Filter

KR 9.49 32.11 9.50 7.80 9.51 9.37 7.81 7.52 8.38 8.40 8.06 6.38 4.79
NSS 12.20 40.72 12.22 9.80 14.13 10.71 8.80 8.54 9.78 9.69 10.66 9.65 6.27
GSW 13.44 40.40 13.47 9.92 16.38 10.45 8.74 8.28 9.48 9.41 10.68 9.60 6.24
LW 9.98 33.81 10.00 8.20 10.28 9.66 7.89 7.55 8.48 8.50 9.09 7.59 4.78

KR Filter

KR 10.38 29.13 10.39 8.28 15.83 8.77 8.70 7.30 7.25 7.83 8.14 7.90 6.32 4.79
NSS 21.90 37.25 21.91 12.70 42.10 13.55 9.94 8.26 8.22 9.18 9.42 10.49 9.59 6.27
GSW 25.64 37.16 25.67 13.53 49.40 15.90 9.67 8.17 7.93 8.84 9.12 10.48 9.53 6.24
LW 11.50 30.69 11.50 8.91 18.53 9.55 8.94 7.39 7.27 7.92 8.24 8.95 7.54 4.78

NSS Filter

KR 11.08 29.35 11.09 8.60 18.15 9.03 8.97 7.32 7.25 7.88 8.20 8.00 6.37 4.79
NSS 18.98 37.11 18.99 12.10 35.84 13.66 10.22 8.27 8.23 9.20 9.46 10.40 9.46 6.27
GSW 23.16 37.02 23.19 13.04 44.31 15.92 9.97 8.17 7.93 8.87 9.18 10.40 9.41 6.24
LW 12.07 30.77 12.08 9.17 20.53 9.78 9.23 7.41 7.28 7.96 8.30 8.88 7.54 4.78

Cross-Sectional OOS

KR 8.87 27.49 8.89 6.73 9.18 8.63 6.06 5.55 6.69 7.15 8.18 7.69 1.48
NSS 15.83 49.39 16.59 13.11 17.52 14.59 13.32 14.05 18.53 15.46 11.01 9.75 3.72
LW 9.28 28.97 9.30 7.07 10.10 8.77 6.30 5.76 6.91 7.20 8.50 8.26 1.82

This table compares the out-of-sample pricing results for different methods. We report the duration weighted and
relative pricing RMSE and average and maturity bucket weighted yield RMSE. In addition, we list the yield RMSE
for ten different maturity buckets. The results are shown with and without filters for the short and the long sample.
The best model performance is indicated in bold. All results are in basis points (BPS). The main out-of-sample
results are evaluated on the next business day after the estimation. We also include cross-sectional out-of-sample
results based on 10-fold stratified sampling.
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Figure A.6: In-sample results by evaluation metric for different filters
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(d) NSS Filter

This plot shows aggregated evaluation metrics calculated in-sample on the sample from June 1961 to December
2013. Columns correspond to duration weighted pricing RMSE, relative pricing RMSE, YTM RMSE, and maturity-
weighted YTM RMSE. All numbers are in basis points (BPS). The top panel correspond to results evaluated on
the full data without filtering. The second panel shows results evaluated on data where securities maturing within
three months are removed. In the third panel, results are evaluated on the sample for which an NSS filter is used
to remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the average
YTM fitting error calculated using NSS curves in the same cross-section. The last panel is for results evaluated on
the sample for which KR is used to remove outlier securities, and the rule is the same as that of the NSS filter. KR
outperforms other methods in term of in-sample fitting quality according to all four evaluation metrics on datasets
with and without outlier removal.
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Figure A.7: In-sample pricing errors for different maturities and filters
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(b) Relative Pricing RMSE
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(c) YTM RMSE

This plots shows evaluation metrics calculated in-sample on the sample from June 1961 to December 2013. The
top panel shows duration weighted pricing RMSE, the mid panel pricing RMSE, and the bottom panel the yield
RMSE. All errors are in basis points (BPS). The first column corresponds to results evaluated on the full data
without further filtering. The mid column shows the results evaluated on the sample for which an NSS filter is used
to remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the average
cross-sectional YTM fitting error on the same day. The right columns shows the results evaluated on the sample
for which outliers are removed with a three standard deviation filter based on KR estimates.
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Figure A.8: Out-of-sample pricing errors for different maturities and filters
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(a) Duration Weighted Pricing RMSE
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(b) Relative Pricing RMSE
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(c) YTM RMSE

This plots shows evaluation metrics calculated out-of-sample on the sample from June 1961 to December 2013. Out-
of-sample errors are calculated using curves estimated at time t to price securities observed on the next business
day. The top panel shows duration weighted pricing RMSE, the mid panel pricing RMSE, and the bottom panel
the yield RMSE. All errors are in basis points (BPS). The first column corresponds to results evaluated on the full
data without further filtering. The mid column shows the results evaluated on the sample for which an NSS filter
is used to remove outlier securities, whose YTM fitting errors are at least three standard deviation away from the
average cross-sectional YTM fitting error on the same day. The right columns shows the results evaluated on the
sample for which outliers are removed with a three standard deviation filter based on KR estimates.
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Figure A.9: Fitted yields of coupon bonds
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(c) 2013-12-31

This figure shows the fitted YTM by different methods for the representative example dates: 1961-06-30 (top panel),
1986-06-30 (mid panel), and 2013-12-31 (bottom panel). The observed YTM is calculated using observed prices,
which is compared against YTM given by model-implied prices. The left and right columns are separated by
non-parametric and parametric methods.
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Figure A.10: LW bandwidth estimates
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This figure shows the LW bandwidth estimated for the example dates 1961-06-30, 1986-06-30, and 2013-12-31.

Figure A.11: Tension and curvature for different maturities with daily granularity
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This plot shows the discretized measures for tension (left panel) and curvature (mid panel) for different maturity
ranges. The right panel shows the curvature measure for KR, NSS, and GSW only. The discrete derivatives use
daily granularity. Results are calculated on the sample from June 1961 to December 2013.
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B.3 Results over Time

Figure A.12: In-sample yield fitting errors over time
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The figure shows the in-sample YTM RMSE (BPS) over time for each last day of the month for five maturity
buckets.
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Figure A.13: Out-of-sample yield fitting error over time
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The figure shows the out-of-sample YTM RMSE (BPS) over time for each last day of the month for five maturity
buckets. Out-of-sample YTM fitting errors are calculated using curves estimated at time t to price securities on the
next business day t+ 1
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B.4 Extrapolation

Figure A.14: Extrapolated KR yield curves
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(c) Varying δ, fixed α = 0.05 and λ = 1

This figure shows yield curve estimates with extrapolation to 50-year maturity for KR as a function of parameters
on the three representative example days 1961-06-30 (left column), 1986-06-30 (mid column), and 2013-12-31 (right
column). The region to the right of the red dashed vertical line is the extrapolation region. Subfigure (a) varies the
smoothness parameter λ for fixed values α = 0.05 and δ = 0. Subfigure (b) varies the maturity weight α for fixed
values λ = 1 and δ = 0. Subfigure (c) varies the tension parameter δ for fixed values λ = 1 and α = 0.05.
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B.5 Statistical Inference

Figure A.15: KR discount curve confidence bands
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The figure shows 3-standard-deviation confidence bands for discount curve estimates given by the KR model un-
der the Gaussian process assumption. The panels correspond to the representative example dates 1961-06-30,
1986-06-30, and 2013-12-31. The left column shows results without extrapolation, and the right column includes
extrapolation results for up to 50-year maturity.
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Figure A.16: KR confidence bands for prices
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The figure shows 3-standard-deviation confidence bands for fitted prices given by the KR model under the Gaussian
process assumption. The panels correspond to the three representative example dates 1961-06-30, 1986-06-30, and
2013-12-31.
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B.6 Basis Functions

Figure A.17: KR kernel function
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(a) K(·, x) for x no greater than one year
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(b) K(·, x) for x greater than one year

This figure visualizes the kernel function K(·, x) for different maturities x. It corresponds to the column vectors of
the KR kernel matrix Kij = k(xi, xj) for selected rows for the baseline model λ = 1, α = 0.05 and δ = 0.

Figure A.18: Principal Component Analysis of panel of discount bonds up to 5-year maturity
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This figure shows the first 6 principal components (PCs) estimated from the panel of discount curves for the five
methods KR, GSW, NSS, LW, and FB. The PCs correspond to the eigenvectors of the largest eigenvalues of the
covariance matrix of discount bond prices. The panel consists of the estimated discount bond prices up to 5-year
maturity for the sample from June 1961 to December 2013.
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C Simulation

Our simulation confirms the main empirical finding that the KR method provides the best out-of-

sample fit. For brevity, we include only an illustrative simulation, but the same finding holds for

a variety of alternative simulation designs. We set the ground truth discount curve equal to the

estimated KR and NSS discount curve estimated on the example day 2013-12-31. Hence, we have

two empirically relevant discount curves based on a non-parametric and parametric model. The

bond prices are observed with random noise. In more detail, we keep the maturity distribution of

observed securities on the example day, and we assume that all securities are zero-coupon bonds for

the ease of implementing FB. For each ground-truth discount curve, we obtain 10 sets of simulated

noisy prices by adding independent Gaussian noise with mean zero and standard deviation one to

the implied ground-truth prices, which are normalized to 100. We estimate the discount curve with

the KR, NSS, LW, and FB method on each set of simulated noisy prices.

We report four evaluation metrics for the two different discount curves. The first metric is

in-sample YTM RMSE, which measures how well the yield of the noisy bond prices is fitted. The

second metric, YTM RMSE, can be interpreted as the out-of-sample yield error and evaluates the

yield error implied by the noiseless prices. By comparing the first two metrics, we can evaluate the

tendency of a method to overfit to noise in the data. The last two metrics are discount and yield

curve fitting RMSE, which measure how well a method estimates the overall ground-truth discount

and yield curves. Both can be interpreted as out-of-sample evaluations and measure the errors for

the complete maturity spectrum. The results are averaged across the 10 simulation runs.

Figure A.19 reports the four evaluation metrics when either KR or NSS is the ground-truth

discount curve. Comparing the first two panels, which show YTM RMSE evaluated on the noisy

and the noiseless price data, we observe that while FB has the lowest in-sample YTM RMSE,

it has the highest YTM RMSE evaluated on the noiseless data. This implies that FB overfits

to noise in data. On the other hand, KR has the lowest out-of-sample RMSE, when comparing

the estimated models with the yields for noiseless bonds and the ground-truth yield and discount

curves. Hence, KR dominates the other methods in terms of capturing the underlying discount

curve and robustness to noise.
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Figure A.19: Simulation results
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(b) NSS discount curve

This figure shows the simulation results when the ground-truth discount curve is set to the KR (top panel) or NSS
(bottom panel) estimates on 2013-12-31. We keep the maturity distribution of observed securities on the example
date, and we assume that all securities are zero-coupon bonds. We obtain 10 sets of simulated noisy prices by
adding independent Gaussian noise with mean zero and standard deviation one to the implied ground-truth prices
that are normalized to 100. We estimate KR, NSS, LW, and FB from each set of noisy prices, and report the four
evaluation metrics: (1) In-sample YTM RMSE, which measures the yield error relative to noisy prices, (2) YTM
RMSE, which corresponds to an out-of-sample evaluation of the yield error relative to noiseless prices, (3) discount
curve fitting RMSE, which measures the error between the estimated and ground-truth discount curve, (4) yield
curve fitting RMSE, which measures the error between the estimated and ground-truth yield curve. All metrics are
reported in basis points. The results are averaged across 10 simulation runs.
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