Coexisting Exchange Platforms: Limit Order

Books and Automated Market Makers

Jun Aoyagi* Yuki Itof
February 25, 2022
Abstract

Blockchain-based decentralized exchanges have adopted automated market
makers—algorithms that pool liquidity and make it available to liquidity takers by
automatically determining prices. We develop a theoretical framework to analyze
coexisting market-making structures: a traditional centralized limit-order market
and a decentralized automated market. Traders face asymmetric information and
endogenously choose trading venues. We show that liquidity on the automated
market complements that on the limit-order market. A unique and stable general
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1 Introduction

Limit order books are a core trading mechanism in the modern electronic financial
market. Traders called market makers provide trading opportunities by placing limit
orders and by quoting prices at which they are willing to buy or sell a certain amount of
an asset. Limit orders are stored in a limit order book (LOB) and publicly displayed.
Liquidity takers then place marketable limit orders or market orders.! An incoming
market order is matched with standing limit orders on the book and is executed at the
proposed bid or ask price.

The recent upsurge in cryptocurrency and blockchain, however, has changed the
landscape of market structures. Many exchange platforms are built on smart contracts
on the Ethereum blockchain, and transactions are executed in a decentralized manner.
These platforms are called decentralized exchanges (DEXs) in comparison with tradi-
tional centralized exchanges (CEXs). They have attracted a sizable trading share in
transactions involving digital assets, as the upper panel of Figure 1 illustrates.”> More-
over, DEXs have introduced pricing and matching algorithms called automated market
makers (AMMs), and they play a substantial role in the prosperity of DEXs.> As a
result, two different market-making algorithms coexist in the markets for digital as-
sets: traditional limit order books and AMMs. We propose a theoretical framework to

analyze this situation.

ISee, for example, Li, Ye and Zheng (2021) for discussions of other sophisticated order types.
2Traditional CEXs (such as Bittrex and Binance) are characterized by a centralized authority who

manages trader funds, requires KYC information, and controls trade-related functionalities of an ex-
change. In contrast, DEXs are built on the blockchain with decentralized information management
systems. Different categories of DEXs exist (see, for example, Totle, 2019), and this paper focuses on

“on-chain” DEXs, in which all but infrastructure and development are decentralized.
3The idea of AMMs was previously proposed and implemented in the context of prediction markets.

However, before the advent of exchanges for digital assets, AMMs were not adopted in markets with
real money, such as equity markets. See, for example, Hanson (2003), Chen, Fortnow, Lambert, Pennock

and Wortman (2008), and Abernethy, Chen and Wortman Vaughan (2011).



Figure 1: Monthly trading volume on DEXs on Ethereum
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Note: The top panel plots the monthly trading volume on DEXs denominated by USD. The bottom
panel plots the monthly trading volume by DeFi projects. They include all DEXs on the Ethereum
blockchain through December 2021. Source: Dune Analytics (duneanalytics.com)

In contrast to a limit-order market, where participants trade with each other, in
an automated market, participants trade against liquidity pools, i.e., pools of assets re-
served on an exchange. AMMs determine asset prices (or exchange rates) following a
pre-determined algorithm by taking the state of the pools as an input. AMMSs do not

require the physical presence of active market makers or dealers for pricing and order
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execution and consume much less memory than the traditional order-book algorithm,
allowing a substantial proportion of trades to be on the blockchain.*

AMMs are classified into several types according to the pricing function. The lower
panel of Figure 1 shows that constant product market makers (CPMMs), adopted by
Uniswap, Sushiswap, and PancakeSwap, are a dominant market structure.” In addi-
tion, Balancer has attracted traders by adopting constant mean market makers (CM-
MMs), while Curve has introduced a hybrid function. In this paper, we analyze a
general form of AMMs called constant function market makers (CFMMs). CFMMs
nest most of the real-world implementations, such as CPMMs, CMMMs, and hybrid
functions, and provide implications with a broader generality.®

AMMs work as follows (Subsection 2.2 provides more details). Liquidity providers
lock traded assets into the exchange, and AMMs aggregate them to create liquidity
pools. Suppose that the liquidity pools reserve x and y units of token X and token Y
prior to a trade. If a trader buys ¢ units of token Y by paying Pé of token X, she moves
the liquidity pools from (x,y) to (x',y’) = (x + P,y — ). For example, the CPMM
algorithm requires the (squared) geometric mean of the liquidity pools to be constant,
xy = x'y’. This single equation derives the price of token Y in terms of X as P = y%(s'
In general, CFMMSs are characterized by a certain function f and impose condition

f(«',y") = f(x,y) to derive a price as a function of the trading volume () and the

amount of liquidity supply (x,y). Liquidity in an automated market is measured by

#Harvey, Ramachandran and Santoro (2021) propose five problems in traditional centralized finance
(CeFi) that decentralized finance (DeFi) may solve: inefficiency, limited access, opacity, centralized con-
trol, and interoperability. In this paper, we take these motivations to adopt DeFi as given and focus on

the economic consequences of the adoption of DeFi.
SPancakeSwap is not on the figure because it operates using Binance Smart Chain.
®Few exceptions include constant sum market makers. Also, Uniswap v3 has implemented a more

complicated pricing function than CPMMs by allowing liquidity providers to supply liquidity within a
certain range of prices. Our results regarding traders’ platform choice are robust to Uniswap v3 as long

as the bonding curve satisfies the regularity conditions in Appendix C.
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the amount of assets locked in the platform, i.e.,, x and y. The incentive for liquidity
providers stems from fluctuations in the pools’ value caused by a trade (i.e., x’ — x and
y' —y), as they withdraw and liquidate their contribution when they exit the market.”
This paper studies how the introduction of CFMMs affects the liquidity of the en-
tire market when traders face an asymmetric information problem. Importantly, our
model features coexisting exchanges with two different market-making algorithms: a
DEX with a CFMM and a CEX with a limit order book. There are informed for-profit
traders, uninformed liquidity (noise) traders, and market makers, and they endoge-
nously choose their trading platforms. We first analyze the consequences of an exoge-
nous variation in DEX liquidity for traders’ behavior and its impact on CEX liquidity.
We then endogenize liquidity provision by market makers on the DEX and describe
how liquidity on the DEX and the CEX jointly reacts to greater informational friction.
Liquidity on the DEX complements that on the CEX. This is because informed
traders and liquidity traders exhibit disproportional reactions to increases in the DEX
liquidity pools. Larger liquidity pools mitigate the price impact of a liquidity-taking
order, and informed traders enjoy this effect because they tend to cluster on the same
side of the DEX, incurring a large price impact. Thus, larger liquidity pools attract
more informed traders to the DEX. In contrast, the reaction of liquidity traders to ad-
ditional liquidity tends to be weak. Their trading behavior stems from random ex-
ogenous reasons, such as margin calls or hedging needs, and random buy and sell
orders tend to cancel each other out on the DEX. This leads to a small expected price
impact, and deeper liquidity on the DEX has a limited effect on liquidity trading. As a
result, more informed traders than liquidity traders migrate from the CEX to the DEX,
leading to a less severe adverse selection problem and deeper liquidity on the CEX.
We then formulate the expected profit function for liquidity providers on the DEX

with asymmetric information. As the existing theories suggest (e.g., Angeris and Chi-

7In reality, liquidity providers also obtain fees, staking rewards, and governance tokens, but we

abstract away from these exogenous factors in this paper. See Subsection 6.2 for more details.



tra, 2020), liquidity providers suffer from a cost called impermanent loss. It emanates
from informed traders imposing an adverse selection cost on uninformed liquidity
providers (Glosten and Milgrom, 1985). In contrast to the literature, however, liquid-
ity providers in our model also gain lucrative trading opportunities, as the expected
value of liquidity pools improves when a trade is initiated by an uninformed liquidity
trader. The profit opportunity is hard-wired in the convexity of the CFMMs’ pricing
algorithm: when the liquidity pools randomly fluctuate along the convex curve, their
expected value improves due to Jensen’s inequality.® Therefore, liquidity providers
endogenously determine their liquidity supply by weighing the impermanent loss
against the profit from noise trading. As in limit-order markets, liquidity in an au-
tomated market is negatively affected by the signal-to-noise ratio of order flows.

Our model proposes several important empirical implications. Since CFMMs are a
type of convex pricing, consuming liquidity involves a larger price impact than adding
it. In other words, given the trading size, a buy order tends to be more costly than a
sell order. Due to this asymmetric price impact on the DEX, bid and ask prices on the
CEX also tend to be asymmetrically distributed around the expected value of the asset,
leading to a biased midpoint quote compared to the expected asset value.

Also, buy and sell orders predict the future asset return with heterogeneous preci-
sion. The above-mentioned asymmetric price impact makes DEX buyers more reactive
than sellers to exogenous variations in deep parameters. When the DEX exogenously
becomes less attractive, for example, a sell order flow tends to be more informative
and followed by a negative innovation in the asset’s return compared to a buy order
flow followed by a positive innovation. This is because informed buyers on the DEX

are more likely to switch their trading venue than informed sellers, whereas liquidity

8The main model considers a one-shot trading game without fees for simplicity. Thus, liquidity
providers withdraw assets immediately after a trade to avoid further impermanent loss caused by ar-
bitragers. In Subsection 6.2, we discuss the case where liquidity providers earn fee revenues from

transactions but must also pay blockchain mining fees to withdraw liquidity.



traders exhibit a relatively weak reaction compared to informed traders due to their
limited expected price impact. These results are indicative of the market reaction to,
for example, listings of new cryptocurrency/token pairs on a DEX, such as Wrapped
Bitcoin (WBTC) and Wrapped Ethereum (WETH) on Uniswap.

The last part of the paper provides welfare analyses. Since trading is a zero-sum
game, the aggregate welfare depends on the exogenous private utility of liquidity
traders. In the model, we assume that they have heterogeneous preferences for the
DEX or the CEX, e.g., aversion toward delays on the DEX and cyber security risks on
the CEX. Thus, whether the DEX improves welfare crucially depends on the modeling
assumption of liquidity (noise) traders. However, we show that the absolute wel-
fare impact of the introduction of the DEX can be measured by observing the bid-ask
spread on the CEX, as the spread determines the measure of liquidity traders who are

willing to use the DEX.

Related literature. This paper is built on the large body of literature on market mi-
crostructure. In particular, Glosten and Milgrom (1985) and Kyle (1985) provide mod-
els of market liquidity with asymmetric information, following the conceptualization
of Bagehot (1971). We apply their canonical framework to the new context of decen-
tralized exchanges and show that adverse selection still plays a key role in explaining
liquidity provision in a market with AMMs.

The modern financial market has experienced the fragmentation of trading ex-
changes, and several papers have addressed the implications of coexisting exchange
platforms with different market microstructures, such as dark pools (Ye, 2011; Zhu,
2014; Ye, 2016), heterogeneous latency and transparency (Lee, 2019), and speed bumps
(Brolley and Cimon, 2020). Our model also sheds light on the liquidity impact of het-
erogeneous market structures in the era of decentralization and blockchain.

Moreover, it contributes to a general understanding of blockchain, cryptocurrency,

and decentralized exchanges. The literature is expanding (see Chen, Cong and Xiao,



2019, and Harvey, Ramachandran and Santoro, 2021 for comprehensive reviews), and
many authors have analyzed the blockchain protocol as a new platform for value
transfer, including Chiu and Koeppl (2017), Malinova and Park (2017), Pagnotta and
Buraschi (2018), Schilling and Uhlig (2019), Abadi and Brunnermeier (2018), Cong,
Li and Wang (2021), and Huberman, Leshno and Moallemi (2021). However, these
studies either consider order book markets only or abstract away from the formal de-
scription of matching or pricing algorithms on decentralized platforms. We seek to
provide further insights by incorporating AMMs into the equilibrium analyses as a
dominant market-making algorithm on DEXs.

Although the research on AMMs is in its infancy, Angeris, Kao, Chiang, Noyes and
Chitra (2019) provide a model of the optimal arbitrage problem with constant product
market makers, and Angeris and Chitra (2020), Evans (2020), and Angeris, Evans and
Chitra (2020) generalize analyses to the case with CFMMs.? Several complementary
papers have also analyzed the market microstructure of AMMs. Lehar and Parlour
(2021) compare the returns for liquidity providers on limit order markets and auto-
mated markets separately. Capponi and Jia (2021) develop a game theoretic model of
liquidity provision via AMMs, investigating the possibility of a liquidity freeze and
the impact of AMMs on other decentralized applications.!? Park (2021) points out that
AMMs harm efficiency because the algorithmic pricing facilitates economically mean-
ingless transactions, such as front-running. Han, Huang and Zhong (2021) empirically
attest that traders respond to prices both on CEXs and DEXs, rather than referring to
the price on only one type of exchange. Our model complements the above studies by

developing the first theoretical framework to analyze coexisting AMMSs and limit-order

‘Implementational details of decentralized exchanges are provided by, for example, Warren and

Bandeali (2017), Zhang, Chen and Park (2018), and Adams, Zinsmeister and Robinson (2020).
19Tn contrast to our paper, Capponi and Jia (2021) do not rely on information asymmetry. In such a

situation, they show that the liquidity providers” willingness to supply liquidity can be encouraged by

a larger impermanent loss.



markets.

2 Technology Overview

We briefly describe trade execution on decentralized exchange platforms using a CPMM,
a leading example of a CFMM (or an AMM in general). Appendix A provides an

overview of the blockchain technology.!!

2.1 Decentralized Exchanges

Building a trading platform on the blockchain (i.e., a decentralized exchange) is a nat-
ural strategy to extricate financial trading from a centralized information management
and to make it robust to cyber attacks or single point of failures. As suggested by Har-
vey, Ramachandran and Santoro (2021), decentralization in finance is expected to im-
prove traditional finance in many aspects, such as efficiency, transparency, and limited
access. However, maintaining a limit order book by a smart contract on the Ethereum
blockchain is costly and tends to be slow, due to the time-consuming mining process,
a complicated matching mechanism of limit order books, and the limited capacity of
the blockchain.

As a first solution, several DEXs have adopted “hybrid” mechanisms that involve
both on-chain and off-chain features.'> However, the hybrid system still uses central-
ized protocols to a certain extent. The second solution is AMMs. As mentioned in the
introduction, an AMM is a pre-determined algorithm that sets a price for order exe-

cution. As it is simpler than a limit-order matching mechanism, it requires much less

1Readers can refer to Antonopoulos (2014) and Antonopoulos and Wood (2018) for more details.
12For example, Ox is built on the so-called relayer mechanism (see Warren and Bandeali, 2017). It pro-

vides an off-chain order book, on which traders can broadcast their intentions and find their coun-
terparties. Since the order book is maintained off-chain, it refreshes swiftly. Once traders agree on a

transaction (i.e., trade execution), the order is settled on the blockchain via smart contracts.



computational capacity, making trade on the blockchain easier and faster.

2.2 Constant Product Market Makers

Liquidity pools and asset prices. Consider token X and token Y. Market makers inject
tokens into an exchange following a certain rule described below. The exchange ag-
gregates locked tokens and creates liquidity pools. Suppose that the exchange reserves
x units of token X and y units of token Y. The CPMM requires the geometric mean
of the liquidity pools to be constant. In particular, the initial liquidity pools define a
constant, k = xy, and the prices for subsequent transactions are determined so that the
product of liquidity pools stay the same at the initial level (before transaction fees are
incorporated).

If a trader wants to buy Ax of token X by selling Ay = PAx of token Y at price
P, she adds Ay of token Y to the pool and withdraws Ax of token X. This triggers
the following change in the pools: x — ¥’ = x — Ax, and y — ¥y’ = y + Ay. Since
the geometric mean of the pool must be constant, the price must satisfy the following
equation.

x'y" = (x — Ax)(y + PAx).

The above equation determines P as a function of the current state of the pool, (x,y),

and the trading quantity, Ax:

__ Y
x—Ax’

The larger the quantity the trader wants to buy (Ax > 0), the higher the price she must

pay, i.e., the price is an upward-sloping curve in the trading quantity.



Figure 2: Constant product market makers
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Note: This figure illustrates a change in the state of liquidity pools when an incoming market order
is buying Ax units of token X. The CPMM requires the liquidity pools to stay on the convex curve by
adjusting for a change in token Y or, equivalently, the execution price p.

Also, considering a small trading volume, Ax — 0, the execution price for an in-
finitesimal trade is given by p = lima,_,o P(Ax) = y/x, that is, the relative size of the
liquidity pools. p is referred to as the marginal price of the asset when the liquidity
pools have (x,y). Figure 2 shows a change in the pools’ state caused by the above
transaction: the marginal price is determined by the slope of the curve specified by
k = xy.

Moreover, the pricing algorithm of the CPMM (or AMMs in general) satisfies the
property called path independence, i.e., when the liquidity pools move from one state to
another, the expected execution price is independent of the paths that the pools take.
In the context of our paper, this means that trading a certain amount of assets all at
once is equivalent to splitting orders and trading sequentially.'> Appendix D provides

a formal proof for this point.

13 As discussed by Angeris et al. (2019), splitting orders costs more than trading all at once if a trader

must pay a fee for trade execution.



Liquidity providers. When a market maker (or a liquidity provider) supplies liquid-
ity via the CPMM, she is required to lock both token X and token Y. The amount of
supplied liquidity must be adjusted so that the price of an infinitesimal trade does
not change (see Subsection 3.3 for a more detailed analysis). A transaction triggers
(x,y) — (x',y'), and the change in the value is a source of their profit (or a cost). In
particular, if market maker i injects (x;, y;) before a trade, and the aggregate size of the
pools is (x,y), she obtains the share of the pools, w = r;ﬁ—igi. Once a trade is executed,
the market maker can withdraw her share from the post-trade liquidity pools, (x, y’ ),

and realize her returns. On Uniswap, for example, it is free to withdraw liquidity at

any time without lockup periods.'*

Constant function market makers. Our main model considers a CFMM. This is a broader
class of AMM characterized by a certain function f : R, — R, which maps the
current state of the liquidity pools to some constant.!> With the above example, the

execution price P is determined by

f(x,y) = f(x = Ax,y + PAx).

f must satisfy some regularity conditions so that P > 0 is uniquely determined by the
above equation (see Subsection 3.3 for formal analyses). Note that the CPMMs are a

special case of the CFMMs with f(x,y) = xy.

3 The Model

14See, for example, https:/ /blog.orbsdefi.com /p/how-to-withdraw-liquidity-from-uniswap
15We assume that the automated market deals with exchanges of two assets but, in general, it can be

defined with n > 2 assets by considering f : R" , — R4 4.
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3.1 Environment

Consider a trading game in a two-period economy (t = 0,1) with three types of
traders: informed traders, liquidity traders, and market makers. They trade a single
risky asset with an initial common value vy.

Throughout the paper, we use the term asset to underscore the model’s generality,
and cash (e.g., USD) serves as the numeraire. Alternatively, we can think of the asset as
a digital token (e.g., an ERC-20 token) and cash as another risky token or a stable coin,
with v being their relative value. With this interpretation, the asset price represents

the exchange rate between tokens.

Events and traders. One of two possible event types triggers a trade at t = 1: either
an innovation in the value of the asset (a common-value shock) or a liquidity shock (a
private-value shock).'® With probability 7, the common value of the asset experiences
an innovation and becomes 9 = vy(1 4 &), where ¢ = 0 with the same probability.
Without a loss of generality, we normalize the initial value of the asset to vy = 1.

There is a continuum of risk-neutral informed traders with a unit measure. When
a common-value shock hits the asset, they immediately observe the realized value of
the shock, sequentially arrive at the market, and trade the asset by choosing one of
two trading venues (defined below). As in conventional market microstructure theory
(e.g., Glosten and Milgrom, 1985), an informed trader sends a single-unit market order
after deciding on her trading venue.

With probability 1 — 7, a shock hits the private value of liquidity traders. Liquidity
traders are impatient investors with no material information. They are motivated by
factors like hedging needs, margin constraints, and other immediate borrowing and

lending requirements. A private-value shock triggers their needs for immediacy and

16See, for example, Menkveld and Zoican (2017) and Brolley and Zoican (2020) for models with these

shocks as a trigger of transactions.



makes them want to trade. Following Zhu (2014), mass zp,, (resp. Zger1) Of liquid-
ity buy (resp. sell) market orders arrive at the market, where z;,, and zy,; are ran-
dom variables independently and identically distributed on [0, Z) with mean 0.5z. For
i € {buy,sell}, the random trading size z; can be thought of as the aggregate orders
from n liquidity buyers (each indexed by k), whose trading sizes {z], } are iid random
variables and add up to z;. In the limit of # — oo, individual trading size z{; be-
comes infinitesimal and has no impact on the distribution of the aggregate order size
z;. Namely, the joint distribution of zy,, and z,; conditional on each trader’s order
size z; becomes the same as the unconditional joint distribution of zj,, and Zeor1-V

We assume that liquidity traders must decide on their venue at t = 0, i.e., before
they enter the market. This is because they are unsophisticated retail investors, and
maintaining multiple accounts on both exchanges (or subscribing to a smart order
router) is costly.'® Appendix B relaxes this assumption and allows them to choose
their trading venues contingent on the sign of a private-value shock.

There is also a continuum of uninformed market makers (liquidity providers) with a
sufficiently large measure. At the beginning of the game, competitively many mar-
ket makers either post a single-unit limit order on a limit-order market or lock one
unit of assets in the liquidity pools of an automated market. At the end of t = 1,
information about ¥ becomes public, and market makers revoke (reprice) their limit
orders and withdraw liquidity from the pools to avoid an adverse selection cost and

an impermanent loss.!”

17See the discussion in Zhu (2014) for the formal microfoundation and convergence results at 1 — co.
18 As of July 2021, only a limited number of cryptocurrency exchanges provide order routine services

across CEXs and DEXs. An investor may trade via institutional brokers, but a large portion of cryp-

tocurrency trades are done directly by retail investors.
9Subsection 6.2 justifies liquidity removal by market makers by considering exogenous arbitragers.



Figure 3: Timeline of the game

informed traders
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Figure 3 illustrates the timeline of the game and possible outcomes of the trigger

event.

Exchange platforms. There are two exchange platforms: a CEX and a DEX. The CEX
is a traditional centralized exchange and operates with a continuous limit order book
(LOB). It retains custody of trader funds and is based on a centralized matching al-
gorithm using high-speed information processors. Thus, it provides ultra-fast trade
execution, causing almost no delays.20

In contrast, the DEX handles transactions via a CFMM. As explained in Subsection
2.2, the platform generates liquidity pools by using the provided assets, and a liquid-
ity taker trades against the pools. The execution price is determined by the CFMM
algorithm instead of quotes by market makers.

Trading with the CFMM involves smart contracts on the Ethereum blockchain and
21

its throughput is lower than the CEX, causing a delay in completing a transaction.

Following Zhu (2014), a delay in trade execution weighs negatively on the private

20Delays in order execution on centralized exchanges are scaled by microseconds or nanoseconds and

are almost negligible in this paper.
2l Aside from the delays in executing transactions on decentralized exchanges, there is a different

source of delays that is common in DEXs and CEXs. If a user has digital tokens and wants to use them



utility of liquidity traders, as they are impatient and eager to fulfill their trading needs
immediately.”? In the model, a liquidity trader on the DEX incurs o of delay costs
per unit of trade, where 7 represents heterogeneous aversion toward a delay (or need
for immediacy) and y ~ U[0, 1]. The delay cost is proportional to asset volatility o It
can be seen as margin constraints or unmodeled risk aversion (e.g., Brunnermeier and
Pedersen, 2009; Zhu, 2014).

Although the following discussion regards <y as the delay cost, this interpretation
is not essential to our model. Indeed, we can relax the assumption and allow 7 to
take negative values, e.g., v ~ U[—z, 1], with an additional parameter assumption.
7 < 0 means that some traders prefer the DEX to the CEX due to, for example, cyber
security risks on the CEX. Thus, the model can incorporate a variety of differences
between these exchanges in a reduced form. The modeling assumption is innocuous
to traders’ behavior in the equilibrium but leads to different welfare implications, as

discussed in Subsection 5.4.

Solving the model. We solve the model by taking steps backward. We first analyze
traders’ behavior given the market liquidity. Afterward, we consider endogenous lig-
uidity supply. Subsection 3.5 endogenizes liquidity on the CEX with that on the DEX
being fixed, and Section 5 considers endogenous DEX liquidity.

Traders” behavior is described by their platform choice. Measure By, (resp. Bse)
of informed traders buy (resp. sell) the asset on the DEX when @ = 1+ ¢ (resp. ¢ =
1 — o). It turns out that informed traders behave asymmetrically depending on the

trade direction, By, # Bser, due to the convex nature of the CFMM. We denote the

to make a payment in the real world, she converts them into fiat currency (e.g., USD) by trading on a
centralized exchange and transfers the funds to her bank account. Although buying fiat currency on the
CEX takes almost no delays, transferring funds can cause some delays. However, this does not affect

the model description because a user incurs this delay no matter where she obtains her tokens.
2Imposing a delay cost on informed traders does not change the qualitative results but adds com-

plexity to our analyses.



fraction of liquidity traders on the DEX as « € [0, 1], which is not contingent on the sign
of a private-value shock, as they decide on the trading venue at t = 0 (see Appendix
B for the case with asymmetric «).

For simplicity, our model does not incorporate fees, such as maker/taker fees and
Ethereum gas fees on the DEX. Also, the possibility of dynamic arbitrage trading af-
ter informed /noise trading is beyond the scope of our one-shot trading environment.

These points are further discussed in Subsection 6.2.

3.2 Trading on the CEX

The partial equilibrium on the CEX with the limit order book is standard and follows
the model by Zhu (2014). We denote the equilibrium bid and ask prices as

Ask =144, Bid=1—0b.

For brevity, a and —b are sometimes used to refer to the ask and bid prices. Also, the
(effective) bid-ask spread is defined as S = a + b. Following market microstructure
theory, we guess that the bid and ask prices depend on the signal-to-noise ratio of
order flows and denote them as a = a(By,,, &) and b = b(Bsr, ).

Accordingly, the expected profits for an informed trader who trades on the CEX

are given by

oc—a ,u) if & = +0 and buys the asset,
NIC((NT) _ (,Bbuy ) y (1)
0 — b(Bsers, &) if & = —o and sells the asset.

Note that the informed trader’s profits are conditional on the realized value of &. Sim-



ilarly, a liquidity trader’s ex-post profits per unit of trading on the CEX are given by**

—a(Bpuy, «) if k = buy,
s = ) @
—b(Bser, 1) if k = sell,

where subscript k indicates whether the private-value shock induces a trader to buy
or sell the asset. Since each liquidity trader expects to buy and sell with the same

probability, her ex-ante expected profit per unit of trading is

1
2

k=buy,sell

Namely, a liquidity trader expects to pay the (half) bid-ask spread on the CEX.

3.3 Trading on the DEX

Constant function market makers. In this section, we assume that the liquidity providers
supply an exogenous and sufficiently large amount of the asset, denoted as X (see Sec-
tion 5 for endogenous X). The initial size of the cash pool is denoted as C, and the
following discussion derives C as a function of the initial asset pool, X, via the non-
arbitrage condition at the beginning of the game.

If an incoming market order trades é units of the asset (6 > 0 means a buy order)

23We implicitly assume that a liquidity trader obtains private utility u if she fulfills her trading needs,
with u being sufficiently large (e.g., u > 1+ ). Therefore, all liquidity traders participate in the market
upon being hit by a shock. u does not affect the equilibrium conditions because a liquidity trader obtains

it no matter which platform she uses.



at cumulative execution price P, the state of the liquidity pools changes as follows.

C—C =C+Ps (4)
X = X' =X—34. (5)

The CFMM is defined by function f : R3 | — R, which sets the execution price
by requiring the post-trade state of the pools to satisfy?*

F(C,X) = f(C+ P5,X —6). 6)

We impose the following regularity conditions on f to pin down a unique price.?’

Condition 1. The CFMM function f : R3, — Ry with initial liquidity pool (C,X)
satisfies the following:

(i) f is differentiable, g:—aa exists, and f.(c, x) and f(c, x) are positive for all c,x > 0;

(ii) If (c, x) is on function f, there exists h : R4 — Ry 4 such that ¢ = h(x;C, X) and h is
decreasing in x; and

(iii) {(c, x)|f (¢, x) > k} is a strictly convex set for all k > 0.

Note that the conditions above are satisfied by most of CFMMs in the real world.
For example, a CPMM is the special case with f(C,X) = CX and satisfies all the
regularity conditions.

To establish the model with the coexisting exchanges, we first assume that no arbi-

trage exists at the beginning of the game.

Assumption 1. At the beginning of the trading game, there is no arbitrage, and an infinitesi-

mal trade cannot make a strictly positive profit.

24The assumptions that f is convex and continuously differentiable are sufficient for the following

result. For the proof, we derive weaker conditions for f in Appendix C.
2 Appendix C provides additional technical conditions to rule out multiple equilibria and unrealistic

behavior of the equilibrium price.



Note that an infinitesimal trade (6 — 0) is executed at the marginal price?®

Po = mr ()

where we denote the partial derivative of f(c, x) with respect to j = c, x as f;. There-
fore, the non-arbitrage condition is given by pg = E[7] = 1.

For a general CFMM, the non-arbitrage condition implies that there exists a differ-
entiable and increasing function, denoted as g : R1+ — R4, such that C = g(X).
This function specifies the initial condition of the cash pool and the CFMM constant k
given the size of the asset X that liquidity providers intend to supply.”

With a CPMM, for example, the price in (7) is given by py = C/X, and the non-
arbitrage condition requires the initial state to satisfy C = g(X) = X. Also, this con-
dition pins down the CPMM constant as k = CX = X2. For simplicity, we denote the
following results by using X rather than denoting (C, X) = (g(X), X).

Secondly, we characterize a set of “reachable states” for liquidity pools, (c, x), on
the CFMM curve. Namely, if state (c, x) is on the CFMM curve with the initial condi-
tion (C, X) = (g(X), X), the value of c is expressed by using monotonically decreasing
function i : Ry — R4 4 as

c = h(x; X). (8)

Equation (8) draws a convex curve of the CFMM. In the case with a CPMM, the above
equation is ¢ = h(x; X) = XTZ because the CPMM curve is specified by k = XC =
X? due to the non-arbitrage condition. In what follows, we denote ¢ = h(x) unless
otherwise specified.

By using the above functions, we can derive the marginal and expected cumulative

prices for a trade. Proofs for the following results are provided in Appendix C.

26Taking the first-order derivative of equation (6) with respect to § and setting 6 — 0 yield po.
27 As explained in Subsection 2.2, C = g(X) determines the rule of liquidity provision when market

makers endogenously supply (C, X) in Section 5.



Lemma 1. Given the initial state of the liquidity pools, (g(X), X), and function ¢ = h(x) in
(8), the expected price for a trade with size § # 0 is given by
1 0 fie(h(X

PO.X) =3 ), fc(h(X:

S| O

;}f: ;dS. 9)

Also, the marginal price for an infinitesimal trade after § units of trade is made is given by

S| O

~ fx(W(X=6),X —=9)
POX) = X =8, X —0)"

(10)
The marginal price function, p, satisfies the following conditions.?8

(i) p is increasing in J;

(ii) p is decreasing in X if, and only if, § > 0;

(iii) p is differentiable with respect to both elements, and ;;T;;( < 0; and
(iv) ps(m, X) > ps(—m, X) holds for all m, X > 0

For a fixed initial liquidity X, Condition 1 essentially suggests the monotonicity
and convexity of the marginal price function with respect to trade size .

Firstly, the more the trader intends to buy (resp. sell), the higher (resp. lower) the
marginal execution price becomes (condition [i]). Moreover, conditions (ii) and (iii)
imply that ample liquidity lowers the marginal price given the size of a trade when
a trader is buying the asset (6 > 0), while it increases the marginal price for a seller
(0 < 0). In other words, a larger liquidity pool (X) makes the market deeper, and a
market order of a given size has a smaller price impact. Hence, it is appropriate to use
the pool size (X) as the measure of liquidity on the DEX. Finally, condition (iv) implies
the convexity of the price function regarding ¢, though the condition is weaker than

the convexity.

28In addition, we can show that (v) A(,X) = |p(6, X) — 1] is log-submodular in (5, X) for & # 0. We use
this condition in the formal proof in Appendix C.



With a CPMM, for example, the expected and marginal prices are given by

XZ
P, X) = X) = =5 11
It is straightforward to check that Lemma 1 holds because g—g = % > 0, 3—; =
_25X 92 —2X(X4-26
X gy and by = —(X(f(s)‘* ) <.

Profits of informed traders on the DEX. Informed traders arrive sequentially to the mar-
ket, and each observes the current state of the liquidity pools to learn how much in-
formed trading has already been conducted. If B measure of informed traders have
already traded on the DEX, the next arriving informed trader executes her order at
marginal price p(B, X). As a result, the informed trader’s marginal profit on the DEX,
given that B € { Bbuy, —Bsen } measure of other informed traders have completed their

transactions, is

— (B fF—
(5, B) = 1+(i P (Bouy, X) ifo=+0 12
p(—Bse, X) —(1—0) ifd=—0.

Note that each informed trader trades one unit of the asset and has an infinitesimal
measure. Thus, she is concerned about the marginal cost (or return) of trading, p,

relative to the return (or cost), 3 =1+ 7.

Profits for liquidity traders on the DEX. Conditional on the realization of the random
trading size, a liquidity trader with <y expects to obtain the following interim profits
per unit.

1 —Ep,[P(aAz, X)] —yo if k = buy,
En:[mDi(7)] = ) (13)
Ep,[P(aAz,X)] —1— o ifk = sell.



Note that the mean price, P, matters from the interim perspective, as the trader does
not know the timing of her order execution when she decides on her venue. The
aggregate order size, Az = zp,, — zg, is uncertain for each liquidity trader, and Ex,
is the expectation over Az. Since each liquidity trader is infinitesimal, observing her
own trading size does not affect her inference regarding the aggregate order size, z;.
Importantly, the expected price impact of liquidity trading on the DEX tends to be
weaker than that of informed trading. This is because liquidity traders conduct ran-
dom trading, and buy and sell orders tend to cancel out. In contrast, informed traders

trade based on the same information and cluster on the same side of the market.

3.4 Platform Choice

Given liquidity on the DEX and the CEX, the proportions of informed and liquidity
traders who participate in the DEX, {(B;)i—puy,se11, &}, are determined so that (i) the
informed traders become indifferent between the two platforms, and (ii) the liquidity
traders are differentiated by comparing the ex-ante expected profits on each exchange.
We search for an equilibrium where the DEX and the CEX coexist and have a strictly
positive share, i.e., B;,« € (0,1).

Firstly, informed traders choose their platforms so that the marginal costs on both

exchanges become identical.

1+ a(,Bbuy/“) = p(.Bbuy/ X)/ (14)
1- b(ﬁsellr“) = P(_,Bsell/X)- (15)

In both equations, the LHS represents the marginal trading cost on the CEX, while
the RHS is that on the DEX. If the above equations do not balance, marginal informed

traders switch their venue, and B; adjusts so the equations hold. Indeed, the next



section shows that such an equilibrium exists and is unique and stable.?’

Secondly, a liquidity trader with cost parameter 7y participates in the DEX if, and
only if, the expected profit (conditional on 7) from trading on the DEX surpasses that
from trading on the CEX:*°

E > E

”Bk (7)
k=buy,sell

k=buy,sell

where the last equality uses (3). By using (13), the above inequality is reduced to

S(;Bbuy/ ,Bsell/ (X)
20 '

y<y=

The LHS is the expected trading cost on the DEX. Since a liquidity trader buys and
sells with the same probability, the execution price does not affect the expected cost.
However, the delay cost matters because a liquidity trader on the DEX bears it regard-
less of the trading direction. In contrast, the RHS represents the expected trading cost
on the CEX, i.e., the bid-ask spread. Since v ~ U|0, 1], we obtain

S(Bouy Bsel, &)

a=Pr(y <9 = 55 : (17)

Liquidity traders with a relatively small -y prefer trading on the DEX, as this exchange
provides a lesser expected price impact with a lower delay cost. The opposite is true

if 7y is relatively large.

PSince liquidity takers choose their trading venues by comparing the ex-ante expected prices, it is pos-
sible that the ex-post price on the DEX deviates from the asset’s value. This deviation may cause further
arbitrage trading, and Subsection 6.2 discusses how to incorporate this possibility without changing the

results in our one-shot trading environment.
30We assume that a liquidity trader participates in the DEX when she is indifferent.



3.5 Liquidity on the Centralized Limit-Order Market

We investigate whether conditions (14) to (17) have a unique set of solutions by spec-
ifying the bid and ask prices on the CEX. On the LOB, one of the competitive market
makers is active on the equilibrium path due to the price-time priority, i.e., one mar-
ket maker can post her limit order on the top of the book and be matched with an
incoming trade. We call this trader the CEX market maker. Since other potential mar-
ket makers are willing to post a better price off the equilibrium path, the CEX market
maker posts a competitive quote (see Zhu, 2014 and Baldauf and Mollner, 2020 for the
same setting).

Given the venue choice of traders, the expected profits for the CEX market maker

from posting a and b on each side of the market are

N%/I,ask = % [77(1 - ,Bbuy) (a - 0') + (1 — 77)(1 — Dé)Zﬂ] ,
TSt bid = % [17(1 = Bsenn) (b — o) + (1 —17)(1 — a)zb] .

In both equations, the first term represents a trade with an informed trader, which
occurs with expected mass %17 (1 — B;), and the second term shows the case of liquidity
trading, which occurs with expected mass (1 — ) (1 — «)z. Following Zhu (2014), we
focus on the equilibrium in which the CEX market maker breaks even on both sides of

the market, leading to the following competitive bid and ask prices.

o . (1 - ,Bbuy)ﬂ

Ay P g 1 gy 19
_ _ (1 — Bsen)1

b= b ®) = g T (- — a2 (19

The above prices are potentially asymmetric, as we allow By, # Bser- The spread pos-
itively (resp. negatively) reacts to the intensity of informed (resp. liquidity) trading,

because it exacerbates (resp. mitigates) the adverse selection cost for a market maker.



4 Partial Equilibrium with Exogenous DEX Liquidity

We first define and analyze the (partial) equilibrium with exogenous DEX liquidity, X,

as it helps us endogenize X in Section 5.

Definition 1. The partial equilibrium with exogenous DEX liquidity (X) is defined by the pro-
portions of informed and liquidity traders on the DEX, {(B;)i=puy,se11, &}, the bid-ask prices,
(a,b), and the marginal execution prices on the DEX, p, such that (i) the marginal informed
traders satisfy indifference conditions (14) and (15), (ii) the liquidity traders are differentiated
by equation (17), (iii) the bid and ask prices are given by (18) and (19), and (iv) the price on
the DEX is provided by (10) given the initial liquidity pool (g(X), X).

With the bid and ask prices given by (18) and (19), the indifference conditions (14)
to (17) pin down the equilibrium mass of traders on the DEX given X. To obtain an
interior solution, we assume that the expected mass of liquidity trading is sufficiently

large.

Assumption 2. The expected size of liquidity trading satisfies z > z* = % .
Assumption 2 guarantees that market makers do not face extremely severe adverse

selection and the market does not break down.

Liquidity traders. Based on (17), (18), and (19), liquidity traders” platform choice is

characterized by

(1 - :Bbuy)n (1 _ :Bsell)ﬂ

= T B+ -0z (0= ey + (- (1 —a)z

, (20)

where the RHS is the normalized bid-ask spread.

Lemma 2. (i) Equation (20) obtains a unique interior solution of the fraction of the DEX
liquidity traders, w, as a function of (Byuy, Bsent, X). We denote it as a* = & (Bpuy, Bsetl, X)-
(ii) With X being fixed, a* is monotonically decreasing in By, and Bee;.



The fraction of liquidity traders on the DEX decreases as the measure of informed
traders on this exchange increases. When informed traders migrate away from the
CEX to the DEX (B; increases), the bid-ask spread on the CEX tightens. Since the exe-
cution price and delay costs for liquidity trading on the DEX are not directly affected

by Bi, the CEX becomes more attractive for the liquidity traders, leading to a lower a*.

Informed traders. Analogously, the indifference conditions for informed buyers and

sellers are given by

_ (1_,3buy)
([T VEL v
_1_ (1 — Bsenn)
PP X) =y + (= (= @

Lemma 3. (i) Equations (21) and (22) yield unique measures of informed buyers and sellers
on the DEX as functions of («, X). We denote them as B = B (a, X) for i € {buy, sell}.

(ii) With X being fixed, B} is monotonically increasing in «.

(iii) B,y < Pigyy for all a € (0,1) and X.

For i € {buy,sell}, B} is a unique and stable solution for each indifference condi-
tionin f € (0,1). The trading intensity of the informed traders exhibits anticipated
reactions to a change in liquidity traders’ behavior. If a larger set of liquidity traders
participate in the DEX (« increases), it exacerbates adverse selection for market mak-
ers on the CEX. It widens the bid-ask spread, encouraging more informed traders to

participate in the DEX (87 increases).



Figure 4: Asymmetric price impact
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Note: This figure describes the price impact of buy and sell orders of the same size, Ax, along the CPMM
curve.

One of the novel features of the CFMM algorithm emanates from asymmetry in
execution prices due to its convexity (see Condition 1). Figure 4 illustrates the intu-
ition behind point (iii) by taking the CPMM as an example. A buy order with size
6 = Ax > 0 moves the initial liquidity pool LPy upward to LP; ;,,,, while a sell order
of the same size moves LPy downward to LP; 4;, both along the curve C = X —1. Since
the curve is convex, the buy order requires a larger adjustment along the y-axis than
the sell order, Acy,,;, > Acsep3! The convexity of the CFMM implies that the execution
price is determined so that adding liquidity to the pools bears a smaller price impact

than consuming it. Hence, an innovation in the asset’s value induces a dispropor-

31 Although the curve y = k/x is symmetric around x = y, the reaction of y is asymmetric to x & d as
long as d > 0. Moreover, the asymmetric price reaction does not mean the existence of an arbitrage op-
portunity. Buying J and selling the same amount simply push the liquidity pools back to their original

position, leading to no profits. This logic is true even if we switch the role of cash and the asset.



tional reaction of informed sellers to informed buyers, leading to ﬁ’guy < B This

asymmetry generates the following result.

Corollary 1. The midpoint quote on the CEX is biased and is higher than the expected value

of the asset, i.e., A%FB . E[g].

Further implications regarding the informativeness of an order flow and the bid-
ask spread are discussed later.

By using the results in Lemmas 2 and 3, we can express the partial equilibrium
measures of informed and liquidity traders on the DEX as functions of the DEX lig-

uidity, X.

o’ (X)
Bi (X)

& (Bpuy (0, X), Boen (a”, X), X), (23)
Bi (& (Bpuy: Bsenrs X), X)- (24)

Proposition 1. In the equilibrium, there is a unique set of (a*(X),ﬁiuy(X), 2(X)) that

solves equations (20)-(22), and the solutions are stable.

4.1 Liquidity Impact of Automated Market Makers

Analyzing the above equations answers an important question: does additional lig-
uidity on the DEX improve or harm liquidity on the CEX? Since the bid-ask spread on
the CEX is determined by the signal-to-noise ratio of a trade, we must investigate the

reaction of ( ‘BZW, +;;) relative to that of a* to a change in DEX liquidity, X.

Proposition 2. (i) The measure of informed buyers on the DEX, B v is increasing in X.
* 4 *

(ii) The expected measure of informed traders on the DEX, M, is increasing in X.

(iii) The proportion of the liquidity traders on the DEX, a*, is decreasing in X.

(iv) The bid-ask spread on the CEX is decreasing in X.



Proposition 2 shows that informed traders are inclined to participate in the DEX
when it becomes more liquid, whereas liquidity traders tend to use the CEX.

Firstly, informed traders are concerned about the price impact on the DEX, which
is decreasing in X. Thus, larger liquidity pools marginally reduce the cost of informed
trading on the DEX and attract more informed traders. In turn, more active informed
traders on the DEX mitigate the adverse selection cost for the CEX market maker, and
the bid-ask spread declines.

Secondly, a change in X does not directly affect liquidity traders” behavior, as the
execution price on the DEX does not matter to them in expectation. Hence, facing a
narrower bid-ask spread on the CEX triggered by the migration of informed traders,
more liquidity traders move to the CEX.

This process involves a decline in the bid-ask spread or improved market liquidity
on the CEX, as demonstrated by point (iv) in Proposition 2. Therefore, our model
suggests that liquidity on the DEX complements that on the CEX. This result not only
helps us derive the general equilibrium with endogenous X in the next section but

also provides testable implications discussed in Section 6.

5 Equilibrium with Endogenous DEX Liquidity

This section considers liquidity provision by market makers on the DEX. Prior to the
trading game (at ¢t = 0), each market maker decides whether to supply one unit of the
asset to the liquidity pool. Since the market-making sector on the CEX is competitive
and yields no profit in expectation, it works as an outside option for market makers
on the DEX.

To guarantee the existence of the equilibrium, we assume the presence of passive
liquidity providers on the DEX. They provide some exogenous amount of liquidity,

Xpassive > X = z(f_—jq)' and stay inactive. This assumption is to avoid market break-



down: even if the active liquidity providers supply zero liquidity, the DEX has a posi-
tive amount of liquidity that can absorb the potential size of liquidity-taking orders.>?

The aggregate supply of the asset is defined as X = Xpgssive + 1 X m, where m
denotes the measure of active market makers. We search for the equilibrium value of
X (or, equivalently, m) in the following sections by focusing on the pairs of endogenous

variables (X, &, Byuy, Bsenr) that satisfy the equilibrium conditions.?3

5.1 Market Makers’ Profits on the DEX

When a market maker locks the asset, she must supply ¢ units of cash into the pool,

obtaining w = &1} share of the aggregate pools.** She must follow this rule so the

non-arbitrage condition remains true. With a trade of size J, the post-trade liquidity
pools have C" and X' in equations (4) and (5). After a trade, the market maker earns w

share of (C/, X'), realizing the difference from the initial cost as her net profit.

Impermanent loss. With probability #, information-driven traders take liquidity where
they are buying and selling with measures B, and B, respectively, with the same

probability. Conditional on these events, the expected profit for a market maker, net

320therwise, even an infinitesimal trade can have a large price, leading to a corner solution for either
Bi or «. The existence of persistent liquidity providers is observed in the real market. See, for example,

Lehar and Parlour (2021).
3BIn particular, the following analyses focus on the variables, (X, &, Bouy, Bsenr), that satisfy the

equilibrium conditions on the marginal price and informed trading: p(Bp.,(X),X) < 1+ ¢ and

p(_,Bsell(X)/ X) >1-—o0.
34The amount of cash supply is different among market makers and depends on the assumption

regarding the timing of liquidity supply. If we assume that market makers sequentially supply liquidity,
each of them faces different states of liquidity pools. For example, if market maker i supplies x units
of the asset when other market makers have already injected Xy and Cy, the current state of liquidity
pools is (Xpassive + X0, Cpassive + Co)- Then, her cash supply must satisfy ¢; = g(xpassive + Xo + x), which
depends on (Xj, Cp). It turns out that c; does not affect the equilibrium conditions (Proposition 5), and

thus we do not specify c; for each liquidity provider.



of the initial cost of injecting assets, is given by 72 below.

ifo=+0

7 =5 180 + P(Bouy, X)Bouy + (14+0) (X — Prug)

ifor=—0o

+8(X) — P(—PBserts X) Bset1 + (1 = o) (X + Bser) | — (¢ +1)

[(P(ﬁbuy/ X) - (1 + U)) ﬁbuy + ((1 - ‘7) - P(_,Bsell/ X)) ﬁsell] .

N g

The first and second lines represent the post-trade net value of the liquidity pools,
which involves either a positive or negative shock on ¢ and informed trading. Since
market makers absorb cumulative trading volumes, their profit involves the expected

price, P, rather than the marginal price, p.

Proposition 3. When a trade is triggered by a common-value shock, (i) the market maker’s
expected net profit on the DEX is negative, i.e., 2. < 0. (i) With X being fixed, 2. is

decreasing in B;.

The negative profit from informed trading is called impermanent loss (see, for exam-
ple, Angeris and Chitra, 2020). The fact that liquidity is taken by an informed trader
implies that the value of the liquidity pools inevitably declines. This is because an
informed trader always subtracts a more valuable asset from the liquidity pools by
adding a less valuable asset. This result highlights the similarity of the CFMM to
market making on the limit order book, where informed trading involves adverse se-
lection for market makers due to information asymmetry (e.g., Glosten and Milgrom,

1985; Kyle, 1985)

Profits from noise. Liquidity traders cause noise trading, i.e., their behavior is inde-
pendent of the value of the asset. This results in market orders with stochastic size

Az = zpyy — zsen- The expected net profit of a market maker conditional on a private-



value shock is given by

2 = wEp, [¢(X) + P(alAz, X)aAz + (X — aAz)] — (c +1)
= wEp, [P(aAz, X)aAz].

Proposition 4. (i) When a trade is triggered by a private-value shock, the market maker’s
expected net profit on the DEX is positive, i.e., 15 > 0.

(ii) TP is increasing in a and decreasing in X.

As in limit-order markets, market makers on the DEX gain from trading with lig-
uidity traders because uninformed liquidity trading improves the value of the lig-
uidity pools. The strictly positive profits emanate from the liquidity pool of cash.®
Since the execution price adjusts the post-trade liquidity pools along the convex curve
f(C,X), Jensen’s inequality implies that E[P(aAz)aAz] > 0. Therefore, the positive
impact of liquidity trading is hard-wired in the CFMM'’s convex pricing algorithm and
works as an implicit reward for liquidity providers.’® This profit mechanism is mag-
nified when the volatility of liquidity trading («) is large. In contrast, greater liquidity
(X) diminishes the variation in liquidity trading and reduces 2.

The profit mechanism in Proposition 4 is absent in the literature on automated mar-
ket makers. The existing theory has analyzed how the price in an automated market
converges to an exogenous reference price, where arbitragers facilitate this conver-
gence. We introduce liquidity or noise traders following the microstructure literature
(e.g., Grossman and Stiglitz, 1980; Black, 1986; DeLong et al., 1990) and show that they
play an important role in motivating liquidity provision even without fee rebates to

market makers.

%Since liquidity buy and sell orders are netted out and are independent of &, liquidity trading does

not change the expected value of the asset pool (E[X'] = X — aE[Az] = X).
36See Subsection 6.2 for the possibility of subsequent arbitrage trading after the revelation of &, which

tries to bring the liquidity pools back to their initial state.



5.2 Liquidity Provision on the DEX

The expected profit from providing liquidity on the DEX is the combination of im-
permanent loss and the profit from noise trading, which occur with probability # and

1 — 7, respectively.
i (X) = npr(X) + (1= ) epr(X). (25)

Note that each market maker is infinitesimal and does not incorporate the impact of
her liquidity provision on the aggregate liquidity, X, as well as traders’ behavior, a*(X)
and Bf(X) fori € {buy, sell}. Since we assume a free entry condition for the market-
making sector, the equilibrium size of the liquidity pool is determined by the break-

even condition, 7}; = 0.

Proposition 5. Suppose that (X, &, Byuy, Bsent) satisfy the equilibrium conditions.

(i) Given B; and «, the market maker’s expected profit is decreasing in X when 1) > 0.

(ii) Given B; and w, there is at most one X € [X pgssive, ©0) such that 7D (X) = 0. We denote it
as X* = G(&, Byuy, Bsenr) if such X exists in X € [Xpgssive, ). If a solution for D (X) =0
does not exist in [Xpgssives ), 7111\),1()() < 0 forall X € [Xpassive, ). In this case, we define
X* = Xpassive(= G(&, Bpuy, Bset1))- In both cases, X* is stable.

(iii) X* is weakly increasing in « and weakly decreasing in p;.

Given the behavior of traders, the expected profit for each market maker monoton-
ically decreases with the amount of the asset that is locked (for 7'[]1\3/I > 0). As a larger
number of liquidity providers participate, the individual profit becomes more diluted.

Proposition 5 suggests that there is a unique and stable X* that solves the break-
even condition. As long as b > 0, more liquidity providers participate in the DEX
and pushes up the value of X, reducing 7t}). This process continues until 77} < 0. In
contrast, if 7y < 0, liquidity providers stop supplying liquidity, and X declines until

”z\a > 0 holds. Therefore, the equilibrium is determined by the break-even condition,



nl\% = 0, and it is stable.

Moreover, Proposition 5 implies that the amount of liquidity rises with an exoge-
nous change in «, whereas it declines when f; increases. The intuition follows the tra-
ditional discussions on adverse selection: informed trading relative to liquidity trad-
ing makes it more costly for market makers on the DEX to supply liquidity.

By using the results in Section 4 and Proposition 5, we define the equilibrium with

endogenous DEX liquidity as follows.

Definition 2. The equilibrium with endogenous DEX liquidity (X) is defined by the propor-
tions of informed and liquidity traders on the DEX, {(B:)i=puy,sen1, @}, DEX liquidity supply,
X, the bid-ask prices, (a,b), and the marginal execution prices on the DEX, p, such that (i)
the marginal informed traders satisfy indifference conditions (14) and (15), (ii) the liquidity
traders are differentiated by equation (17), (iii) the bid and ask prices are given by (18) and
(19), (iv) the price on the DEX is given by (10), and (v) the market makers break even on the
DEX.
Mathematically, the equilibrium can be obtained by solving the fixed point problem
regarding X*:
X* = G0 (X*), By (X7, B (X)), 26)

where a* and B} are given by equations (23) and (24), and G is defined by Proposition
5.

Proposition 6. A unique stable equilibrium with endogenous liquidity supply (X*, a*, B, v )

sell

exists as a solution of the fixed-point problem in (26).

The existence of equilibrium is guaranteed by the continuity of G, «*(X), and B} (X)
and their behavior at X — co (see Appendix C for the formal proof).

Intuition follows from the disproportional reactions of informed and liquidity traders
to changes in X attested by Proposition 2. When the DEX obtains more liquidity (X

on the LHS of [26] increases), we know from Proposition 2 that the average measure



of informed traders on the DEX increases, whereas the measure of liquidity traders
declines. These reactions diminish the profit of the DEX liquidity providers. Based on
Proposition 5, they hold back from supplying the asset, causing a decline in the RHS
of (26). Stability is guaranteed by Proposition 5.

5.3 Comparative Statics

To gauge the joint reaction of the traders’ behavior and market liquidity to variations
in an exogenous parameter, we numerically analyze the fixed-point problem in (26),
as it is not analytically tractable. In what follows, we take the volatility of the asset,
o, as a source of exogenous variation. Qualitative results do not change when we use
different values for other deep parameters of the model, 77 and z.

The following analyses adopt the CPMM algorithm, f(C, X) = CX, as the leading
example of a CFMM. This is a natural starting point, given that more than 80% of
transactions are handled by CPMMs on Uniswap, Sushiswap, and PancakeSwap in
the real financial market.

A higher volatility of the asset implies that informed traders possess a greater in-
formational advantage over market makers, and adverse selection worsens both on
the DEX and the CEX. This confounds liquidity provision by DEX market makers,
leading to a decline in X*, as well as a wider effective bid-ask spread on the CEX. The
above changes directly affect informed trading (Bpuy: Beens Via Lemma 3), whereas the
measure of liquidity trading (a*) is only indirectly affected (see equation [20]).

As it becomes more costly to trade on both exchanges, the reaction of §; y and B
can be ambiguous. Panel A of Figure 5 shows that the impact of DEX liquidity (X*)
exceeds that of CEX liquidity (S; the bid-ask spread) for buying informed traders, lead-
ing to a decline in ,BZW. In contrast, B;,;; shows the opposite reaction to ¢. Moreover,
since B ,,; exhibits a stronger (positive) reaction to ¢ than the negative reaction of /3Zuy,

the DEX involves more informed trading in expectation, i.e., Bpuy + Beey increases.

*
sel



Figure 5: Reaction of traders and liquidity to ¢
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Note: These figures are illustrated by using z = 2.0 and = 0.3.

Numerical result 1. When the asset becomes more volatile, informed sellers tend to cluster
on the DEX and informed buyers on the CEX. The net effect is positive in the sense that
the outflow of buyers is dominated by the inflow of sellers to the DEX.

Intuitively, the convexity of the CFMM makes it less costly to add liquidity to the pool
than to consume it. The asymmetric price impact means that an incentive to migrate
(or stick) to the DEX is stronger for informed sellers. In other words, informed buyers
exhibit a stronger reaction to a negative change in X: they are more eager to switch to
the CEX. As a result, informed traders on the DEX exhibit an asymmetric reaction to a
volatility shock. Namely, when selling (resp. buying) the asset, informed traders tend

to cluster on the DEX (resp. the CEX).



Next, consider the behavior of liquidity traders. Panel B of Figure 5 shows that
they tend to cluster on the CEX when the asset becomes more volatile. They compare
the delay cost on the DEX (o) to the expected trading cost on the CEX (S; the bid-ask
spread). Since both of them are proportional to the asset volatility, c has no direct im-

pact on liquidity traders’ venue choice. Instead, what matters is the normalized bid-ask

spread, %, which captures the adverse selection problem for the CEX market maker
that stems from traders’ behavior.
In the above discussion, we have established that informed traders tend to gravi-

tate toward the DEX in expectation (i.e., w

increases), which imposes more se-
vere adverse selection on DEX market makers while mitigating that on the CEX mar-
ket maker. It tightens the normalized bid-ask spread on the CEX and attracts liquidity

traders to that exchange.

Numerical result 2. When the asset becomes more volatile, liquidity traders tend to cluster

on the CEX.

Finally, Panels C and D of Figure 5 summarize the reaction of market liquidity to a
change in asset volatility incorporating the above behavior of traders. Through their
venue choice, traders have indirect effects and undermine the direct impact of o on

market liquidity, but they cannot offset or dominate the direct effect.

Proposition 7. When the asset becomes more volatile, the DEX liquidity supply, X*, de-

clines.%”

Numerical result 3. When the asset becomes more volatile, liquidity on the CEX, as mea-
sured by the bid-ask spread, deteriorates. The normalized bid-ask spread on the CEX,

however, improves.

The normalized bid-ask spread narrows because informed traders, in expectation,

tend to cluster on the DEX, while liquidity traders are more likely to move to the CEX.

3This proposition is not limited to CPMMs and holds for CFMMs that satisfy Condition 1.



In contrast, the effective bid-ask spread on the CEX and the liquidity pools on the DEX

positively correlate and deteriorate when the asset becomes more volatile.

5.4 Welfare

Finally, we provide a positive analysis regarding trader surplus in this economy. The
zero-profit conditions of market makers imply that trading is a zero-sum game. As
a result, a (negative) trading surplus arises due to the delay costs on the DEX (see

Appendix C.8 for the welfare of each type of trader).

Proposition 8. The expected ex-post trading surplus is proportional to the squared normalized

bid-ask spread and is given by
2
T (i> 20, 27)

Trading profits and costs cancel each other out due to the zero profit condition
of market makers, i.e., a trade is just a transfer of money between liquidity traders
and informed traders. The negative private utility from the delay costs drives W. It
depends on a? = (%)2 because (i) the measure of liquidity traders on the DEX is
proportional to &, and (ii) each incurs E[y|y < a] = § of delay costs in expectation.

Proposition 8 indicates that whether the advent of the DEX improves welfare de-
pends on the modeling assumption of liquidity traders. As mentioned in Subsection
3.1, we can introduce negative values for -y representing traders” aversion toward the
CEX due to, for example, cyber-security risks. With o < 0, adding the DEX improves
the aggregate welfare, as a portion of liquidity traders can avoid the risk by trading on
the DEX.

Although the sign of the DEX'’s welfare impact depends on the modeling assump-
tion, its magnitude can be measured through the bid-ask spread on the CEX, S. This is

because the fraction of liquidity traders using the DEX and incurring the welfare cost



(or enjoying the benefit) is proportional to S. An increase in the bid-ask spread on the

CEX upon the introduction of the DEX suggests a large welfare impact.

6 Discussion

6.1 Empirical Implications

Novel empirical implications follow from our model. As exogenous variations, we can
consider, for example, changes in asset volatility o (or the degree of adverse selection)
or ERC-20 tokens cross-listed on some CEXs and DEXs.*

Firstly, the equilibrium prices of the asset on the CEX are affected by an automated

market.

Conjecture 1. With the addition of a DEX with the CFMM, the midpoint of the bid and ask
prices on the CEX tends to be higher than the expected value of the asset.

The first conjecture is a natural consequence of the convex pricing of the CFMM
and Bpyy < PBsenr, theoretically attested to by Corollary 1. A large body of literature
examines asymmetric bid and ask prices, such as Ho and Stoll (1981) and Stoll (1989).
In terms of the bid-ask spread that stems from adverse selection, studies have high-
lighted the asymmetry due to microstructure constraints, such as the discrete tick size
(Anshuman and Kalay, 1998), and the asymmetric distribution of the value of assets
(Bossaerts and Hillion, 1991). Our model proposes a new market structure that brings
about the asymmetric prices in traditional limit-order markets and suggests that the
midpoint tends to over-value the market expectation of the asset’s value.

Moreover, the informativeness of the order flow tends to be asymmetric between

exchanges.

3Uniswap started trading the ETH/WBTC pair on December 2020. WBTC is an ERC-20 token that
is pegged to Bitcoin. Thus, the listing of WBTC on Uniswap can be seen as the advent of a DEX for the

Ethereum and Bitcoin pair, which is previously traded on centralized exchanges.



Conjecture 2. All else being equal, a higher asset volatility (or the degree of adverse selection)
increases the informativeness of the order flow on the DEX and makes the order flow on the

CEX less informative.

This conjecture is based on Subsection 5.2. A higher degree of adverse selection
makes it costly to trade on both venues. Informed traders tend to cluster on the same
side of the market on the DEX, bearing a larger price impact, compared to liquidity
traders, whose behavior is random. Thus, the order flow on the DEX tends to be
information driven, while that on the CEX tends to be private-value driven.

Related to the above conjecture, buy and sell orders may react in different manners
even if the magnitude of a trigger event is the same. The intuition follows from the
combination of the facts that buying the asset bears a higher cost than the return from
selling it (Corollary 3) and that informed traders tend to be more reactive than liquidity
traders (Proposition 2). These facts imply that the informativeness of an order flow is

asymmetric between sell and buy orders.

Conjecture 3. All else being equal, when the asset becomes more volatile (or the degree of ad-
verse selection), sell orders on the DEX are more likely to be followed by a negative innovation
in returns than buy orders to be followed by a positive innovation. The opposite is true on the

CEX.

Moreover, the above prediction regarding the informativeness of the order flow

has direct implications for market liquidity.

Conjecture 4. All else being equal, an increase in the asset volatility (or the degree of adverse
selection) is associated with a decline in the amount of the asset locked in the DEX, a wider

effective bid-ask spread, and a narrower normalized bid-ask spread on the CEX.

For example, our model predicts that the correlation between the effective bid-ask
spread for the ETH/BTC pair on centralized exchanges (e.g., Coinbase) and its return
volatility will be stronger after Uniswap starts trading the ETH/WBTC pair compared

to the pre-Uniswap environment.



6.2 Arbitrage Trading and Liquidity Withdrawal

When information about 7 becomes public at the end of t = 1, the marginal price on
the DEX can differ from @. This deviation induces (unmodeled) arbitragers to trade un-
til the arbitrage opportunity disappears. However, since market makers understand
these arbitragers’ behavior, as well as the realized value of Az, they know that staking
liquidity causes impermanent loss. At the end of t = 1, it is optimal for market makers
to withdraw their liquidity since there is no Ethereum gas fees for liquidity removal in
the model.’

Conditional on this behavior at the end of t = 1, the ex-ante expected return for lig-
uidity providers is given by 70} in (25). Due to the liquidity withdrawal, only passive
liquidity providers stay on the DEX at the end of t = 1, triggering X — Xgssive- After
t =1, the price on the DEX converges to @ due to a trade between passive liquidity
providers and arbitragers, both of whom are unmodeled and exogenous in our model.

This setting ensures our environment of the one-shot trading game.

6.3 Limitations of the Model

Fees. Introducing fees does not change our main discussions. On the DEX, liquidity
takers pay trade execution fees, c, to liquidity providers. Moreover, all transactions on
the DEX must be on the blockchain, meaning that they incur Ethereum gas fees, g. For
example, informed traders on the DEX pay p(Bp.,) + & + ¢ when buying the asset and
obtain p(—PBs.1) — g — ¢ when selling it. Conditional on liquidity removal at the end of
t = 1, each liquidity provider obtains wc (nw +2z(1— 17)¢x> — g in expectation
on top of 7111\34 in (25) due to the fees. The results are quantitatively different from the

main model, but the qualitative results stay the same.

$1n Lehar and Parlour (2021), liquidity providers are assumed to stay in the pools after noise trading
to earn transaction fees from arbitrage trading. Capponi and Jia (2021) consider liquidity providers who

withdraw liquidity to avoid the impermanent loss with Ethereum gas fees.



However, these exogenous fees lead to several modeling issues. Firstly, the Ethereum
gas, g, is paid in ETH, and its price may endogenously change in the equilibrium. Also,
arbitragers may take profit opportunities only if the return is larger than fees, c + g.
Investigating their behavior after the noise trading is cumbersome, as noise trading
causes random shifts in liquidity pools and thus the profit for arbitragers. Liquidity
providers must incorporate this choice of arbitragers and compare the return from the
trading fee and impermanent loss with the Ethereum gas for liquidity withdrawal.
Furthermore, introducing heterogeneous fee environments to each exchange makes
the comparison between platforms arbitrarily biased. Incorporating all these points

would be an interesting extension but beyond the scope of our analyses.

Information revelation. One of the limitations of our model is that it does not accom-
modate strategic informed traders with a long information horizon. When traders act
on long-lived private information, we need to incorporate the public nature of data on
blockchain. As mentioned in Appendix A, trading intentions on the DEX are stored
in the mempool and wait for validation by blockchain miners. In most cases, the state
of the mempool is publicly disseminated and observable for miners and traders. As
suggested by Malinova and Park (2017), Daian et al. (2019), and Park (2021), a trader
may extract other traders’ private information by observing the mempool, generating
front-running risk.

In our model, each informed trader is small and does not incorporate information
revelation by the blockchain mempool. Such long-run behaviors and a strategic aspect

of informed trading (e.g., Kyle, 1985) must be embedded in future research.

Endogenous delay. We cut corners in our analyses of delays on the DEX by assuming
that a liquidity trader incurs a linear delay cost per transaction. This can be thought of
as a situation where the mass of liquidity trading is sufficiently small compared to the

block capacity so that all trades are settled with a constant (and deterministic) delay,



i.e., the block time.

In general, however, a trader can shorten the expected waiting time by paying a
higher transaction fee to blockchain miners. Since a miner processes better-paying
transactions first, proposing a higher fee can move a trader forward in the queue. For
example, Huberman et al. (2021) formulate the expected delay cost (the sum of the
waiting time and fee payment) as an increasing function of the measure of traders
waiting for verification.

Endogenizing the delay cost will certainly add new implications to our model. At
the same time, however, we believe that the endogenous delay cost strengthens our re-
sults. If the delay cost is an increasing function of the measure of liquidity traders on
the DEX («), as suggested by Huberman et al. (2021), liquidity traders will be discour-
aged from participating in this exchange, leading to an even larger outflow to the CEX.
Thus, an endogenous delay cost may work as an additional driving force to mitigate

adverse selection for CEX market makers and improve CEX market liquidity.

7 Conclusion

This paper studies the equilibrium impact of adopting a decentralized exchange (DEX)
with a novel market-making algorithm called a constant function market maker (CFMM).
In the real financial market, DEXs with CFMMs and traditional centralized exchanges
(CEXs) with limit-order mechanisms interact with each other. We construct a model
to describe such a coexistence where traders are endogenously differentiated between
the DEX and the CEX depending on their trading motives, i.e., informed or unin-
formed trading.

The model first shows that the amount of liquidity locked in the DEX has a positive
impact on CEX liquidity (the bid-ask spread). We also characterize the profit function
of market makers on the DEX who supply the asset and cash following the CFMM



algorithm. Based on the derived profit function, we endogenize the amount of lig-
uidity on the DEX and investigate how the DEX and CEX liquidity jointly react to an
exogenous shock. The model proposes novel empirical implications that rely on the
environment with the coexisting platforms.

In our model, we focus on a one-shot trading environment and abstract away from
long-lived private information and sequential trading. When the information horizon
becomes longer, informed traders must incorporate the speed of information revela-
tion via their orders (as in Kyle, 1985). Moreover, price discovery in the long run is one
of the two pillars that determine trader welfare. Thus, constructing a long-run model

based on the current analyses is a topic for future research.
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Appendix

A Blockchain Technology

The blockchain can be seen as a novel way of managing and tracking transactions in-
formation. In the traditional world, we typically maintain a ledger that records partic-
ipants’ state information in a centralized manner, e.g., a bank acts as an intermediary.
Bilateral transactions with no intermediation by a credible third party incur asymmet-
ric information and settlement risk.

In contrast, on the blockchain platform, a ledger is not held by a particular en-
tity, but is distributed across all participants in the network, called record keepers or
blockchain miners. The distributed ledger system requires information about blockchain
users to be a consensus among all record keepers. This highlights its first difference
from traditional transactions, in which only a centralized authority keeps track of in-
formation. Due to its distributed nature, the blockchain is robust to a single point of
failure and does not incur costs of building credibility.

A transaction with a distributed record-keeping system by blockchain goes as fol-
lows. Suppose that Alice wants to buy a cup of coffee at Bob’s cafe by paying Bitcoin.
Information about this transaction must be validated by blockchain miners. More pre-
cisely, the transaction is added to a block by a miner. A sequence of blocks are en-
crypted and become a blockchain. In the Bitcoin blockchain, for example, each miner
in the network maintains a temporary list of unconfirmed transactions, called a mem-
pool. Transactions in the mempool are yet to be recorded on the blockchain, and infor-
mation on the mempool is public to the network. A miner picks one of the transactions
in the pool and tries to validate it by executing costly computation following a certain
algorithm. The fastest miner who solves the problem adds transaction information to

a block (i.e., she mines a block). The reward for mining a block is a fee: when Alice



initiates a transaction, she attaches a fee to her transaction, and the validating miner
obtains the attached fee.’

In general, it is extremely difficult for one miner in the network to overturn the
consensus. In the case of Bitcoin or Ethereum, for example, they leverage their com-
puting power to solve a time-consuming cryptographic problem. This process is called
proof of work (PoW), and the miner who performs it fastest is entitled to add a new
block a chain.*! Of course there can be multiple chains of blocks, because each miner
can choose to which blockchain she adds a newly mined block. Following Nakamoto
(2008), however, the longest chain is regarded as a valid chain. Therefore, if a mali-
cious agent attempts to add fraudulent information to the transaction history (e.g., a
double-spending problem), she must outpace all miners in the network and secretly
generate a longer chain than other chains, which requires prohibitively high comput-
ing power. That is, information on the blockchain is (almost) free from tampering.

Moreover, Ethereum allows users to add complex scripts to the blockchain which
describe the conditions under which transaction is verified and recorded. It implies
that a transaction takes place only if the conditions in the code are fulfilled, and it is
done automatically without any centralized third-party agencies. This type of auto-

mated contracts are called a smart contract following Szabo (1997).

40A miner also obtains a block reward, which is a constant amount of Bitcoin (or other cryptocur-
rency in other blockchains), when she mines a block. Although the block reward incentivizes miners to
leverage their computing power, the amount of reward periodically shrinks and converges to zero in

the future.
#1There are several ways to reach a consensus, and different blockchains (including ETH 2.0) adopt

different processes. For example, Saleh (2021) analyzes the viability of the proof of stake (PoS).



B Contingent Platform Choice

In this appendix, we check the robustness of our results by relaxing the assumption
regarding liquidity traders” venue choice. We allow liquidity traders to choose their
trading venue contingent on the realized sign of a private-value shock. In the follow-
ing argument, we assume that the liquidity traders can choose their venue at t = 0
upon learning her trading size (i.e., buying or selling the asset). Due to the convexity
of the CPMM pricing, we focus on the equilibrium in which the fractions of buying
and selling liquidity traders on the DEX are asymmetric and given by a,, € (0,1)
and ag; € (0,1), respectively.

By applying the same logic as the previous sections, informed traders’ indifference

conditions are given by

1+ a(ﬁbuy/“buy) = P(,Bbuy)r (28)
1-— b(ﬁsell/ ‘xsell) = p(_ﬁsell)' (29)

where p is given by equation (9), and the ask and the bid prices are given by (18) and
(19) with asymmetric a. As a result, the equilibrium measure of informed buyers and

sellers can be expressed by reusing the previous equations.

Corollary 2. Given o« = (ocbuy, Xserp ), the equilibrium measures of informed buyers and sellers
on the DEX, ( ,Bzuy, B, solve the indifference conditions in (28) and (29). There exist a

unique set of solutions and they are stable. B is increasing in X, o, and w; for i € {buy, sell}.

Thus, the reaction of informed traders in the partial equilibrium stays the same as
the previous case with symmetric « in Proposition 1.
Now, consider the venue choice for liquidity traders. When a liquidity trader buys

(resp. sells) the asset on the CEX, her trading cost (resp. reward) is the ask (resp. bid)



price. In contrast, she pays or obtains the following symmetric price on the DEX:

Pnoise((xbuyr “sell) = IE(zbuy,zse”) [P(D‘buyzbuy - “sellzsell)} ’

where E is the expectation regarding the random variables z;. As an example,

ZpuysZsell )

assuming z; ~ U[0, z] and the CPMM generates the following explicit formula:

X
Poise(Xpyy, & =
noise Xouy. Osel) (g zset) | X — (@puyZbuy — XseliZsel1)
X— u
. X lo (X + ‘Xsellz)X—HXSE”Z(X - D‘buyz) Fouy® (30)
220y el & XX(X — zAn)X—z0u

When « is symmetric, the net expected amount of liquidity trading is zero, as zp,,
and —zg,; are symmetrically distributed, and buy and sell orders are netted out. In
contrast, the asymmetric behavior of buy and sell liquidity traders prevents the orders
from completely offsetting each other.

When deciding on the trading venue, a liquidity trader with delay cost v compares

the trading cost on the DEX (the LHS) and the CEX (the RHS):

1+ a(Bouy, Xouy) — Proise(@puy, #sen)  if a “buy” liquidity shock hits,
Yo =

Pnoise(“buyr ‘xsell) — (1 - b(lgsell/ OCSE”)) if a ”sell” llquldlty shock hits.

Since vy uniformly distributes over [0, 1], we obtain the following:

Corollary 3. Given (Byyy, Bseir), the equilibrium measures of liquidity buyers and sellers on
the DEX are given by the solution of the following equations.
1+ a(,Bbuyr beuy) - Pnoise(“buy/ Ksell )

Xpuy = ps s

Pnoise(“buy/ “sell) - (1 B b(,Bsellr D‘sell))
- .

Ksel] =



Fori € {buy,sell}, a; is decreasing in B; and increasing in ; for j # i.

The above result shows that the reaction of «; in the partial equilibrium is the same
as the previous analyses. The additional result brought by the asymmetric « is the
strategic complementarity between liquidity buyers and sellers. Namely, liquidity
buyers are more willing to trade on the DEX when more liquidity sellers participate in
the DEX, and vice versa. This is because a larger trading volume on the opposite side
of the market offsets the buy liquidity orders, leading to a smaller shift in the liquidity
pools and a weaker price impact. Therefore, liquidity begets liquidity on the DEX, as
in the traditional limit order markets (e.g., Pagano, 1989).

Finally, the expected profits for a market maker on the DEX is given by

mi(X) = L[ (P(Biuy) = (140)) By + (1= 0) = P(=Bla)) Bien|  G3D)

+ w(l - W)]E[Pnoise(“buy/ “sell) (“buyzbuy - ‘Xsellzsell)] (32)

Once again, it is easy to check that 7{1\13L 7 < 0and n]l\)/I,LT > (0, meaning that a market
maker loses from informed trading and gains from liquidity trading. A larger mass of
informed trading on the DEX, as well as a higher volatility of the asset, reduces DEX

market makers’ profits by worsening adverse selection.



Figure 6: Reaction of informed and liquidity traders
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values, as long as it holds that z > z*.

Numerical result. In what follows, we take the CPMM as an example to see the ro-
bustness. Figure 6 plots the reaction of informed traders (the left panel) and liquidity
traders (the right panel) on the DEX to an increase in the volatility of the asset. The
asymmetric reaction of informed buyers and sellers on the left panel shows that the
result in the previous analyses is robust to a change in the assumption on liquidity
traders” venue choice. The right panel, however, shows that allowing a contingent

venue choice adds a new implication regarding liquidity traders’ behavior on the DEX.

Numerical result 4: When the asset becomes more volatile, liquidity buyers tend to cluster
on the CEX, while liquidity sellers tend to cluster on the DEX. The net effect is negative,
i.e., outflow of liquidity traders from the DEX dominates inflow to the DEX.

The net behavior of liquidity traders ay,, + ag is different from that of informed
traders. Intuitively, a liquidity trader on the DEX is not directly affected by the con-
vexity of the CPMM algorithm per se, as she is uncertain about the aggregate trading



volume (given by [30]). Thus, the asymmetric reaction of liquidity traders is driven by
the asymmetric reaction of informed traders, that is, B, and B;. Since the expected
mass of informed traders increases on the DEX, the bid-ask spread on the CEX shrinks
which, in turn, induces liquidity traders to participate more on the CEX in expectation.

Therefore, ap,;, + as declines with .

Figure 7: Reaction of market liquidity
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values, as long as it holds that z > z*.

Given the venue choice by traders, Figure 7 shows the reactions of market liquidity.
The left panel shows the comparative static of DEX liquidity, measured by X*, while
the right panel illustrates the bid-ask spread (S) and the normalized bid-ask spread
(S/0). Since the net behavior of liquidity traders stays the same as the previous sec-

tions, so does the impact of the asset volatility on market liquidity.



Internet Appendix

C Proofs

In addition to the regularity conditions in Subsection 3.3, we assume the following
technical condition to guarantee the uniqueness of the equilibrium and rule out ab-
normal behavior of prices. All conditions lead to the pricing function in Lemma 1

which provides intuition for the regularity conditions.

Condition 2 (Technical conditions). The CEMM function f : R3 | — R with initial

liquidity pool (C, X) satisfies the following:

(v) L X((Z((;:jg;g;:g is decreasing in X if and only if 6 > 0, convex in 6, and differentiable
fx(h(X=6,C,X), X~
fe(h(X—6,C,X),X—

(vi)a(s,X) = |§:é:é§:gg§;§:g; — 1| is log-submodular in (X, J).

c

with respect to 6 and X. Moreover, d

g; /0X is decreasing in J ;

C.1 Proof of Proposition 1

First, let us show that a*(Bpyy, Bser, X) uniquely exists. Equation (20) is
_ S(ﬁbuy/ Bser )/ o _ 1 (1- ;Bbuy)n i (1 — Bse)y
2 2| (A= Bouyn +2(0—a)(X=n) (1= Bsen)yy +2(1 —a)(1 —77)
(33)

It holds that S( Bouy: Bsells 1) = 20. Thus, the above equation has « = 1 as a solution.

(94

Also, from the indifference conditions for informed traders, 0 < B; < 1 forall a €

[0,1]. Now, observe that (33) is equivalent to:

1—a=

z(1—a)(1—17) [ 1 . 1 ]
2 (1= Bouy)n +z(1—a)I—=n) (1= Bsa)y +z(1—a)(1—7) |

Whena # 1,
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_z(1—7) 1 1
= [O—ﬁmﬂﬂ+dl—wﬂ—ﬂ)+Uf%MMW+41—MU—ﬂJ 4

holds. Let the right hand side of this equation be g(«). Then, g(0) < 1. Moreover,

oy 2(1=1) z(1—1) z(1—17)
=" Lu—ﬁwwn+41—mu—n»2+«1—mmm+¢u—axr—wvl>0

holds. Hence, an interior solution a* exists if and only if g(1) > 1, which is equivalent

to z > Z with
277 (1 - ﬁbuy)(l - ﬁsell)
1- n 2— 5buy - ,Bsell '

For any Byyy, Bsenn /2 < z° = % holds. Hence, Assumption 1 implies g(1) > 1. This

7 =

also shows that a* is unique if it exists. The negative impact of B; on a* in the partial
equilibrium is straightforward.

Next, let us show that 7 («, X) uniquely exists. Observe that

{1 +0— p(ﬁbuy)} (1 - 5buy)77
{P(Bouy) =1} (1= 1)z

=1—«

holds. Since LHS is decreasing in f;,, and can take any positive value, there is an
unique solution ﬁ;uy(oc, X). Moreover, this implies that By (% X) is increasing in a.
Following a similar argument, we can prove that 87,,(«, X) uniquely exists and is

increasing in a. Furthermore, observe that

1+o—p)y1-p)y _{p(-p)-1-0)} 1-p)y
{p(B) =1} (1 —n)z {1-p(=p)} (1 —1)z

holds for > 0. Hence, g, (¢, X) < B, (&, X) must hold.
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C.2 Proof of Proposition 2

Equation (34) implies:
P i 93, .
N R Gl i + 31— )

(1= By +2(1 =) (1 —17))? - ) +2(1—a*)(1—1))?

holds. By the conditions derived in Proposition 1, observe that:

a:BZu aoé*
aIBZuy

= (B X) + Pp(Bru X)) (1= By 1 +2(1 = ") (1= )

. 9B, on*
- p(ﬁbuy/X) (17 a;y +Z(1 - 77) oX

and this is equivalent to:

a *
(T +0 = pBruys X)) + Pp(Bpuys X) (1 = Bpyy )11 +2(1 —a") (1 —17))) §§<y

+ X (Bpuys X) (1= By )1 +2(1 —a”) (1 —17))

*

= (p(Bi X) ~ D21~ ) 2%

Similarly, observe that:

9Bl o
Tax 21T 15x
a *

= (px (=B X) — Pp(—Bierr X) a;g” (1 =B +z(1 = a*)(1—1n))

. JB: da*
— p(=Ber, X) (’7 6);” +z(1 - ﬂ)ﬁ)

~(1-0)
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and this is equivalent to:

*

((P(=Bserr X) = (L =) + pp(—Bgen, X) (1 — Bey)n +2(1 —a™)(1 — U)))%
— px (=B X) (1 = o)1 +2(1 — &) (1 —17))
= (1= p(—Boerr X))z(1 —

0X

Combining these results, we obtain %";( < 0 since px is negative (positive) when its

ﬁ*

first argument is positive (negative). Furthermore, at lease one of 57 is positive.

We may further rewrite the above equations as:

PBruy dnt (I=PBp)n+z(1—a")d—py)
anBsell _ da* (1_ :ell)n+z(1_“*)(1_17) *
0X _2(1_17) oX + 1_p(_ ;kel]/X) pX(_ﬁsell’X)

for some positive A, B. Lemma 1 Condition (vi) implies:

pX(:B;uy’ X) < _PX( ﬁ:ezlrx)

<0
p(ﬁZuy’X) _1 1 _p( sell’X)

Hence, we obtain:
*
aﬁbuy > B alBsell

A 0X X

', L
Since at lease one of gé is positive, !;X is positive. If ﬁ -3 > 0, we are done. Suppose

9B
X < 0. Then,

0— /31;1”17_'_ 9xz(1—1n) n S6”77‘*‘ ax z(1—1)
(1= By +2z(1 =) (1 =m))? (1= BLy)n +z(1—a*)(1—17))?
< ﬂbuy’7+ 5xz(1—1n) ﬁsell’ﬁL axz(1—1n)

(1= B +2(1 —a*) (1= 1)) - ) +2(1—a*)(1—1))?
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0 *u 9B* . *
holds. Hence, % + ggg” > 0 since %LX < 0.

C.3 Proof of Proposition 3

Since p(ﬁiuy) < (I1+0) and p(B;,;) > (1 —0), we get P(ﬁ;uy) < (1+0) and
P(B%,;) > (1 —0). Therefore, 5. < 0 holds. Next, observe that:

ontl.
aﬁbuy

= 2 (p(Bruy X) — (14 ) <0

because we are focusing on (X,&, Bpyy, Bseir) that satisfy the equilibrium conditions, in

particular, p(Bpy, X) — (14 ¢) < 0. Similarly, we can show that 7l is decreasing in

;Bsell-

C.4 Proof of Proposition 4

Since Q is symmetric, we may rewrite the profit function as:
z
P = w/ (P(aAz) — P(—aAz))aAzdQ(Az).
0

This is positive because p is increasing in . Let us consider the comparative statics

with respect to . Observe that

aAz
(P(ahz) — P(—ahz))adz :/0 (p(6) — p(—6)} do

Since p is increasing in J, this object is increasing in «. Hence, 7 is increasing in a.
Furthermore, since p is decreasing in X if and only if § > 0, this object is decreasing in

X. Combined with the fact that w is decreasing in X, 72 is decreasing in X.
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C.5 Proof of Proposition 5

First, we provide the formal statement of point (iii) in Proposition 5 that deals with

endogenous variables in a global range.

Proposition 9 (Generalized point (iii) of Proposition 5). Let B;(X) € Ry be the so-
lutions to p(Byuy, X) = 1+ 0 and p(—PBserr, X) = 1 — 0. X*(&, Byuy, Bser) is decreas-
ing in Ppuy at (&, Bouy, Psen) = (A, Bouy, Bsenr) if Bouy € 10, Bouy (X (A, Byuy, Bsenr)))-
X*(&, Buy, Bseir) is decreasing in Beeyy at (&, Bouy, Bser) = (A, Byuy, Bsent) if

Bsetl € [0, Bsert (X* (A, Byuy, Bsenr)))- Since equilibrium conditions require p(Bpyy) < 1+ 0
and p(—PBser) > 1 — o, our interest lies in B; that takes values within the range that Quaran-

tees point (iii) of Proposition 5.

First, since (P(Bpuy) — (1+0)) Bouy + (1 — ) — P(=Bsenr)) Bsenr » E[P(aAz)aAz]
and w are decreasing in X, 7t} is also decreasing in X for 71§} > 0 given B; and a.

Next, for 711\?1 = 0 to hold, we need:

T L(P(Bouys X) = (1+0)) Bouy + (1= @) = P(=Boan, X)) o] + (1 = )E[P(arz)adrz] = 0.

Note that we take 8; and « as fixed and not functions of X. Since the LHS is decreasing
in X and negative for sufficiently large X, there is a unique and stable solution X* if
the LHS is positive at X = xpssi0e- When the LHS is not positive at X = xssive, it is
negative for all X > x50

As we have shown in Proposition 4, 7P is increasing in «. Hence, X* is increasing

in «. Now, observe that
2 oanb,

Eaﬁbuy
Since we have B,y € [0, Bpuy(X* (A, Bpuy, Bsenr))), we get p(Bpuy, X) < (14 0) for all

D
X > X*(A, Byuy, Bsenn)- Therefore, ;;T—ZZ < 0 holds for all X > X*(A, Byyy, Bsrr). Hence,

= p(ﬁbuy) - (1 + ).
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X* is decreasing in By, at (&, Byuy, Bseir) = (A, Bouy, Bsenr) if Bouy € [0, Bouy (X* (A, Bpuy, Bseir))) -

We can also show that X* is decreasing in B.; following a similar discussion.

C.6 Proof of Proposition 6

Let S: R —R3be
S(X) = (2" (X), Bpuy (X), Boen (X))

and let G : R® — R be the function specified in equation (26). We will show that
G o S has a unique fixed point. By Propositions 1 and 5, we know that functions S
and G are well-defined. Moreover, these functions are continuous and thus G o S is
continuous. Since limyx ., S(X) = (0,1,1) holds, limx ;e G 0 S(X) = max{Xpassive, X}
holds where X satisfies p(1,X) — p(—1,X) = 20. Also, note that G o S(Xpassive) >
X passive holds. Hence, G o S has a fixed point in [xssive, 00)-

Next, we claim that 725 (X; S(X)) = 17l (X; S(X)) is strictly decreasing in X. Note
that 70 (X*; S(X*)) = 0 must hold if X* is an interior solution for the DEX liquidity

in equilibrium. Observe that:

A (X; S(X))
dX

By (X) B (X)

= 1| (p(By (X0, X) = (14 ) ) 222 1 (1= ) — p(— iy (X), X)) T =

2

+ PX(IBZuy(X)’ X)IBZMy(X) o PX(_IB:EZI(X)/ X):B:ell(X)
(1 ) BP0 K ()

Since a*(X) is decreasing in X, the last term is negative by Proposition 4. Moreover,
since PX([%ZW(X), X) < 0and Px(—p:,;(X),X) > 0hold, the second line is negative.

sell

Finally, we show that the first line is also negative. Equilibrium conditions lead to
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(1—n)(—a")z
= Bpuy (X)) + (1= 1) (1 —a*)z’

i Y (- -a)z
(1 ) = P(=Bsen(X), X) = (1=BL;, X))+ 1 —=n)(1—a*)z

p(:BZuy(X)/X) - (1 +0') = —0'(

1¢ Py )

> 0, these terms are negative, and the proof ends. Suppose that ﬁ—X(X) <0.
We have shown that:
By (X) 9B ,l( )
* 1A ¥ 2 + " > 0.
(1= Bpy) +2(1 =) (1 =1))* (1~ 5611)77+Z(1—04 )(1=1))?
By combining these results,

(P(Biy (X, X) = (1)) L2 1 (1) — pl—BL(X), X)) P
=—0(1l—n)(1—a")z
By (X) B ”(X) }

0X

g {(1 N (e [ Ry (R B e ey
= —o(1 =1 —a")z{(1= B, )1 +20—a") 1= 1)}

967,y (X)
% ( 90X

(1= By)n +2(1—a*) (1 —1))?
+ 90X

(L= B + 20— )= 1) (A~ B + 20— &)= 7))
—o(1 =) (1 =)z {1 =B, )y +20—a") (1 - 1)}

9By (X) 9By (X)
o aX n ) e
{((1 — By +2(L—a*)(1—7))> (1= BLy)n +2(1—a*)(1 —17))2}

<0
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This shows that 72D (X; S(X)) is strictly decreasing in X. Hence, there is at most one
interior equilibrium.

When ﬁ]?d(xpussive; S(Xpassive)) > 0, Xpassive cannot be an equilibrium because pro-
viding additional liquidity is profitable, and the above argument shows that there is a
unique interior equilibrium. When ﬁﬁ(stsive; S(Xpassive)) < 0, thereisno X > Xpsssive
such that 775 (X; S(X)) = 0. Thus, Xpassive is the equilibrium DEX liquidity.

The stability of the equilibrium directly follows from Propositions 2 and 5.

C.7 Proof of Proposition 7

From equation (34), we get (Condition A):

P ‘ 9Pz .
0 Tty + % 2(1— 1) Lty + & 2(1- 1)

(T B 1+ 20— ) L= P (1~ Br)n +2(L—a ) (1~ 7))

From the indifference conditions, we may derive:

*

% aleu aDC*
(1= Bl — L+ @)y — = —z(1 =)
= pﬁ(:Bbuy’X ) y+px(13buy'X )_ ((1_;Bbuy)77+z(1_‘x )(1_77))
ar oo
9B}, on*
. * * uy _
p(;Bbuy’X ) (77 o0 +Z(1 17) oo
Similarly,
* 98., o
_(1 - :Bsell)n _ (1 - 0—)77?” - Z(l - 77) o0

oX*

a *
= (=Bl X 5 (=B, X)) (1 By +2(1 = ) (1= 1)

o seny [ OBelt da*
—p(—Bserrr X*) (77? +z(1—7n) " )
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These conditions imply (Condition B):

Piuy _ Px(Bluy X% (1~ By )1 o

wy _ uy _px (1 uy _ o
do (leuy X*)_l ((1 /3buy)77+z(1 x )(1 77))+P(ﬁzuy’x*)_l+2(l 77) oo

A

aIB* PX(— ’X*)ax* (1_13* );7 ou*
B sell __ sell 1— +2z(1 1— + sell +z(1—
Now, let us consider the break-even condition for the liquidity providers. Let

AD(X;S(X)) = 275 (X; S(X)). Observe that:

* JB*
ulX) _ [( By (30,20 — (14 0)) 228 4 (1= 0) = p(—py (), ) LX)

Nl@ I\)IQ

(ﬁbuy + :Bsell)
+ g {Px(ﬁbuy,X ),Bbuyg - PX(—ﬁseUzX)ﬁsezzg}

JE(|P(a*Az; X)a*Az
(1 g P05 e

Rearranging the terms,

ar(X*) 9By OB dX* du* B
do =G oo -G o0 _C3¥+C48(7—C5_0

must hold for C; > 0 (Condition C). Suppose aa)f; > 0. First, assume that gz‘_ > 0. Then,
ﬁh”y and % -l must be positive. However, this is a contradiction

by Condition B, both
to Condition A. Next, assume that aaia < 0. Then, Condition C implies that:

a *
(B (X)) ~ (1+.0)) 0 (10— plpr(0,0) )

Since p(Bj,,(X), X) = (1 +0) <0and (1 —0) — p(—p,;(X), X) < 0hold, at least one

of 'B ( ) must be negative. Condition B implies that A—>* ﬁb”y > Baﬁ <l when aX > 0.
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* 0B8*
Hence, @ < 0 must hold. Then, by Condition A, gf;‘y > 0 holds. Now, following a

similar argument as in the proof of Proposition 6,

a *
(i X) — (1)) 28 (1) — p(— (), )) 2

=—0(1l—n)(1—a")z

aﬁbuy aﬁsell
% Jdo +
{u—ﬁapn+41—wwa—n> (1- %wn+41—wx1—w}
—o(1 =) (1 =)z {1 =B, )y +20—a") (1 - 1)}

a‘BZuy
X ( 90
(1= By +2(1 —a) (1 —1))?
a‘Bsell
+ )

(= B + 20— &)= )~ Biygn 21— )1 1)
—o(1 =) (1 =)z {1 =B, ) +20—a") (1 - 1)}

PBruy 9B
% Jr
{«1%WM+ZOWﬂOn»2+«1 &MM+ZOwM1MV}

<0

This is a contradiction. Therefore, it must be that % < 0.

C.8 Proof of Proposition 8

Informed buyers and sellers on the DEX expect to obtain (in aggregate)

gﬁbuy(l +0— P(,Bbuy,X)) fori = buy,

Wiz, =
%,Bsell(P(_,Bsellr X)—-1+ (T) for i = sell.

Similarly, the ex-post aggregate utility for the liquidity traders on the DEX is
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WD _ Zpuy(1 —n)a(1 — P(aAz, X) — 50) fori = buy,
LT,i

Zsell(1 - W)“(P(“AZ; X) —1- %0’) fori = sell,
as they buy and sell z;,,, and zg,; units in aggregate. Each market maker’s expected

trading profit from supplying w share of liquidity on the DEX is

;

—E[(1 - P(aAz, X))aAz] wp.1—7

Vip(w; X) = w0 X ¢ 0X — By (14 0 — P(Bpuy, X)) w.p.

N N

—0X + ,Bsell(P(_;Bsell/ X) -1+ U) w.p.

\

Obviously, the first line shows the liquidity trading with the private-value shock, and
the second and the third ones are trading due to the common-value shock. Since the
market makers supply X so that E[V;p] = 0, and a trade on the CEX is a zero-sum

game, we obtain the result.

D Sequential Execution

In this appendix, we show that executing an order all at once (AAO) is the same as the

sequential order execution.

Equivalence of post-trade liquidity pools. Suppose that there are n informed traders, and
each of them has measure w = 1 and places ¢ units of market buy order to the DEX
(in the model, we assume § = 1). Note that the aggregate trading is of size . The
initial state of the liquidity pool is denoted as (Co, Xp) with k = CyXp. Note that the

following discussion can be easily extended to the case with liquidity traders.
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The first transaction is executed at price

G
P1= Xo—éw

and the liquidity pool becomes

Xo

— 5 — _—
C1 = Co+ prow COXO—(Sw’

X1 = Xo — dw.

By iterating, we obtain the following transition equations for the liquidity pools: for

generali =1,2,---,n,

Xi 1
C;i=Cjq1————,
i i 1Xz’—1 — Sw
Xi = Xifl — dw.

The above equations imply that, after all (n) transactions are completed, the liquidity

pools have

Xy = Xo —néw = Xy — 9,
Xo Xo

Cn = COXo—néw - COXO—&

Thus, the post-trade state of the pools with sequential execution is the same as that of
AAQ execution. The above result also implies that the profits for the market makers

on the DEX stay the same even if we consider sequential execution of orders.

Equivalence of the execution price. Next, consider the expected trading cost (i.e., the
execution price) for an informed trader. We consider a continuum of traders with

measure f (by setting n — co with § = 1 and w = B/n in the above example) and
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assume that traders’ orders are independently executed following a Poisson process.
Suppose that y € [0, B) orders have been executed before an informed trader gets to
execute her order. From the above discussion, her order faces the following liquidity

pools.
Xo
X() — y

Since her order is infinitesimal, it is executed at price

oy = S = CoXo_
Xy (Xo—y)?
Due to the independent Poisson process, y ~ U[0, B]. Thus, the expected execution

price is given by

1 P Co
= — d — ,
P=3 /0 Py = 33

which is identical to the execution price of each order in the case with AAO trade

execution.
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