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Abstract

Blockchain-based decentralized exchanges have adopted automated market
makers—algorithms that pool liquidity and make it available to liquidity takers by
automatically determining prices. We develop a theoretical framework to analyze
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and a decentralized automated market. Traders face asymmetric information and
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1 Introduction

Limit order books are a core trading mechanism in the modern electronic financial

market. Traders called market makers provide trading opportunities by placing limit

orders and by quoting prices at which they are willing to buy or sell a certain amount of

an asset. Limit orders are stored in a limit order book (LOB) and publicly displayed.

Liquidity takers then place marketable limit orders or market orders.1 An incoming

market order is matched with standing limit orders on the book and is executed at the

proposed bid or ask price.

The recent upsurge in cryptocurrency and blockchain, however, has changed the

landscape of market structures. Many exchange platforms are built on smart contracts

on the Ethereum blockchain, and transactions are executed in a decentralized manner.

These platforms are called decentralized exchanges (DEXs) in comparison with tradi-

tional centralized exchanges (CEXs). They have attracted a sizable trading share in

transactions involving digital assets, as the upper panel of Figure 1 illustrates.2 More-

over, DEXs have introduced pricing and matching algorithms called automated market

makers (AMMs), and they play a substantial role in the prosperity of DEXs.3 As a

result, two different market-making algorithms coexist in the markets for digital as-

sets: traditional limit order books and AMMs. We propose a theoretical framework to

analyze this situation.

1See, for example, Li, Ye and Zheng (2021) for discussions of other sophisticated order types.
2Traditional CEXs (such as Bittrex and Binance) are characterized by a centralized authority who

manages trader funds, requires KYC information, and controls trade-related functionalities of an ex-

change. In contrast, DEXs are built on the blockchain with decentralized information management

systems. Different categories of DEXs exist (see, for example, Totle, 2019), and this paper focuses on

“on-chain” DEXs, in which all but infrastructure and development are decentralized.
3The idea of AMMs was previously proposed and implemented in the context of prediction markets.

However, before the advent of exchanges for digital assets, AMMs were not adopted in markets with

real money, such as equity markets. See, for example, Hanson (2003), Chen, Fortnow, Lambert, Pennock

and Wortman (2008), and Abernethy, Chen and Wortman Vaughan (2011).



Figure 1: Monthly trading volume on DEXs on Ethereum

Note: The top panel plots the monthly trading volume on DEXs denominated by USD. The bottom
panel plots the monthly trading volume by DeFi projects. They include all DEXs on the Ethereum
blockchain through December 2021. Source: Dune Analytics (duneanalytics.com)

In contrast to a limit-order market, where participants trade with each other, in

an automated market, participants trade against liquidity pools, i.e., pools of assets re-

served on an exchange. AMMs determine asset prices (or exchange rates) following a

pre-determined algorithm by taking the state of the pools as an input. AMMs do not

require the physical presence of active market makers or dealers for pricing and order

https://duneanalytics.com/


execution and consume much less memory than the traditional order-book algorithm,

allowing a substantial proportion of trades to be on the blockchain.4

AMMs are classified into several types according to the pricing function. The lower

panel of Figure 1 shows that constant product market makers (CPMMs), adopted by

Uniswap, Sushiswap, and PancakeSwap, are a dominant market structure.5 In addi-

tion, Balancer has attracted traders by adopting constant mean market makers (CM-

MMs), while Curve has introduced a hybrid function. In this paper, we analyze a

general form of AMMs called constant function market makers (CFMMs). CFMMs

nest most of the real-world implementations, such as CPMMs, CMMMs, and hybrid

functions, and provide implications with a broader generality.6

AMMs work as follows (Subsection 2.2 provides more details). Liquidity providers

lock traded assets into the exchange, and AMMs aggregate them to create liquidity

pools. Suppose that the liquidity pools reserve x and y units of token X and token Y

prior to a trade. If a trader buys δ units of token Y by paying Pδ of token X, she moves

the liquidity pools from (x, y) to (x′, y′) = (x + Pδ, y − δ). For example, the CPMM

algorithm requires the (squared) geometric mean of the liquidity pools to be constant,

xy = x′y′. This single equation derives the price of token Y in terms of X as P = x
y−δ .

In general, CFMMs are characterized by a certain function f and impose condition

f (x′, y′) = f (x, y) to derive a price as a function of the trading volume (δ) and the

amount of liquidity supply (x, y). Liquidity in an automated market is measured by

4Harvey, Ramachandran and Santoro (2021) propose five problems in traditional centralized finance

(CeFi) that decentralized finance (DeFi) may solve: inefficiency, limited access, opacity, centralized con-

trol, and interoperability. In this paper, we take these motivations to adopt DeFi as given and focus on

the economic consequences of the adoption of DeFi.
5PancakeSwap is not on the figure because it operates using Binance Smart Chain.
6Few exceptions include constant sum market makers. Also, Uniswap v3 has implemented a more

complicated pricing function than CPMMs by allowing liquidity providers to supply liquidity within a

certain range of prices. Our results regarding traders’ platform choice are robust to Uniswap v3 as long

as the bonding curve satisfies the regularity conditions in Appendix C.

https://uniswap.org/whitepaper-v3.pdf


the amount of assets locked in the platform, i.e., x and y. The incentive for liquidity

providers stems from fluctuations in the pools’ value caused by a trade (i.e., x′− x and

y′ − y), as they withdraw and liquidate their contribution when they exit the market.7

This paper studies how the introduction of CFMMs affects the liquidity of the en-

tire market when traders face an asymmetric information problem. Importantly, our

model features coexisting exchanges with two different market-making algorithms: a

DEX with a CFMM and a CEX with a limit order book. There are informed for-profit

traders, uninformed liquidity (noise) traders, and market makers, and they endoge-

nously choose their trading platforms. We first analyze the consequences of an exoge-

nous variation in DEX liquidity for traders’ behavior and its impact on CEX liquidity.

We then endogenize liquidity provision by market makers on the DEX and describe

how liquidity on the DEX and the CEX jointly reacts to greater informational friction.

Liquidity on the DEX complements that on the CEX. This is because informed

traders and liquidity traders exhibit disproportional reactions to increases in the DEX

liquidity pools. Larger liquidity pools mitigate the price impact of a liquidity-taking

order, and informed traders enjoy this effect because they tend to cluster on the same

side of the DEX, incurring a large price impact. Thus, larger liquidity pools attract

more informed traders to the DEX. In contrast, the reaction of liquidity traders to ad-

ditional liquidity tends to be weak. Their trading behavior stems from random ex-

ogenous reasons, such as margin calls or hedging needs, and random buy and sell

orders tend to cancel each other out on the DEX. This leads to a small expected price

impact, and deeper liquidity on the DEX has a limited effect on liquidity trading. As a

result, more informed traders than liquidity traders migrate from the CEX to the DEX,

leading to a less severe adverse selection problem and deeper liquidity on the CEX.

We then formulate the expected profit function for liquidity providers on the DEX

with asymmetric information. As the existing theories suggest (e.g., Angeris and Chi-

7In reality, liquidity providers also obtain fees, staking rewards, and governance tokens, but we

abstract away from these exogenous factors in this paper. See Subsection 6.2 for more details.



tra, 2020), liquidity providers suffer from a cost called impermanent loss. It emanates

from informed traders imposing an adverse selection cost on uninformed liquidity

providers (Glosten and Milgrom, 1985). In contrast to the literature, however, liquid-

ity providers in our model also gain lucrative trading opportunities, as the expected

value of liquidity pools improves when a trade is initiated by an uninformed liquidity

trader. The profit opportunity is hard-wired in the convexity of the CFMMs’ pricing

algorithm: when the liquidity pools randomly fluctuate along the convex curve, their

expected value improves due to Jensen’s inequality.8 Therefore, liquidity providers

endogenously determine their liquidity supply by weighing the impermanent loss

against the profit from noise trading. As in limit-order markets, liquidity in an au-

tomated market is negatively affected by the signal-to-noise ratio of order flows.

Our model proposes several important empirical implications. Since CFMMs are a

type of convex pricing, consuming liquidity involves a larger price impact than adding

it. In other words, given the trading size, a buy order tends to be more costly than a

sell order. Due to this asymmetric price impact on the DEX, bid and ask prices on the

CEX also tend to be asymmetrically distributed around the expected value of the asset,

leading to a biased midpoint quote compared to the expected asset value.

Also, buy and sell orders predict the future asset return with heterogeneous preci-

sion. The above-mentioned asymmetric price impact makes DEX buyers more reactive

than sellers to exogenous variations in deep parameters. When the DEX exogenously

becomes less attractive, for example, a sell order flow tends to be more informative

and followed by a negative innovation in the asset’s return compared to a buy order

flow followed by a positive innovation. This is because informed buyers on the DEX

are more likely to switch their trading venue than informed sellers, whereas liquidity

8The main model considers a one-shot trading game without fees for simplicity. Thus, liquidity

providers withdraw assets immediately after a trade to avoid further impermanent loss caused by ar-

bitragers. In Subsection 6.2, we discuss the case where liquidity providers earn fee revenues from

transactions but must also pay blockchain mining fees to withdraw liquidity.



traders exhibit a relatively weak reaction compared to informed traders due to their

limited expected price impact. These results are indicative of the market reaction to,

for example, listings of new cryptocurrency/token pairs on a DEX, such as Wrapped

Bitcoin (WBTC) and Wrapped Ethereum (WETH) on Uniswap.

The last part of the paper provides welfare analyses. Since trading is a zero-sum

game, the aggregate welfare depends on the exogenous private utility of liquidity

traders. In the model, we assume that they have heterogeneous preferences for the

DEX or the CEX, e.g., aversion toward delays on the DEX and cyber security risks on

the CEX. Thus, whether the DEX improves welfare crucially depends on the modeling

assumption of liquidity (noise) traders. However, we show that the absolute wel-

fare impact of the introduction of the DEX can be measured by observing the bid-ask

spread on the CEX, as the spread determines the measure of liquidity traders who are

willing to use the DEX.

Related literature. This paper is built on the large body of literature on market mi-

crostructure. In particular, Glosten and Milgrom (1985) and Kyle (1985) provide mod-

els of market liquidity with asymmetric information, following the conceptualization

of Bagehot (1971). We apply their canonical framework to the new context of decen-

tralized exchanges and show that adverse selection still plays a key role in explaining

liquidity provision in a market with AMMs.

The modern financial market has experienced the fragmentation of trading ex-

changes, and several papers have addressed the implications of coexisting exchange

platforms with different market microstructures, such as dark pools (Ye, 2011; Zhu,

2014; Ye, 2016), heterogeneous latency and transparency (Lee, 2019), and speed bumps

(Brolley and Cimon, 2020). Our model also sheds light on the liquidity impact of het-

erogeneous market structures in the era of decentralization and blockchain.

Moreover, it contributes to a general understanding of blockchain, cryptocurrency,

and decentralized exchanges. The literature is expanding (see Chen, Cong and Xiao,



2019, and Harvey, Ramachandran and Santoro, 2021 for comprehensive reviews), and

many authors have analyzed the blockchain protocol as a new platform for value

transfer, including Chiu and Koeppl (2017), Malinova and Park (2017), Pagnotta and

Buraschi (2018), Schilling and Uhlig (2019), Abadi and Brunnermeier (2018), Cong,

Li and Wang (2021), and Huberman, Leshno and Moallemi (2021). However, these

studies either consider order book markets only or abstract away from the formal de-

scription of matching or pricing algorithms on decentralized platforms. We seek to

provide further insights by incorporating AMMs into the equilibrium analyses as a

dominant market-making algorithm on DEXs.

Although the research on AMMs is in its infancy, Angeris, Kao, Chiang, Noyes and

Chitra (2019) provide a model of the optimal arbitrage problem with constant product

market makers, and Angeris and Chitra (2020), Evans (2020), and Angeris, Evans and

Chitra (2020) generalize analyses to the case with CFMMs.9 Several complementary

papers have also analyzed the market microstructure of AMMs. Lehar and Parlour

(2021) compare the returns for liquidity providers on limit order markets and auto-

mated markets separately. Capponi and Jia (2021) develop a game theoretic model of

liquidity provision via AMMs, investigating the possibility of a liquidity freeze and

the impact of AMMs on other decentralized applications.10 Park (2021) points out that

AMMs harm efficiency because the algorithmic pricing facilitates economically mean-

ingless transactions, such as front-running. Han, Huang and Zhong (2021) empirically

attest that traders respond to prices both on CEXs and DEXs, rather than referring to

the price on only one type of exchange. Our model complements the above studies by

developing the first theoretical framework to analyze coexisting AMMs and limit-order

9Implementational details of decentralized exchanges are provided by, for example, Warren and

Bandeali (2017), Zhang, Chen and Park (2018), and Adams, Zinsmeister and Robinson (2020).
10In contrast to our paper, Capponi and Jia (2021) do not rely on information asymmetry. In such a

situation, they show that the liquidity providers’ willingness to supply liquidity can be encouraged by

a larger impermanent loss.



markets.

2 Technology Overview

We briefly describe trade execution on decentralized exchange platforms using a CPMM,

a leading example of a CFMM (or an AMM in general). Appendix A provides an

overview of the blockchain technology.11

2.1 Decentralized Exchanges

Building a trading platform on the blockchain (i.e., a decentralized exchange) is a nat-

ural strategy to extricate financial trading from a centralized information management

and to make it robust to cyber attacks or single point of failures. As suggested by Har-

vey, Ramachandran and Santoro (2021), decentralization in finance is expected to im-

prove traditional finance in many aspects, such as efficiency, transparency, and limited

access. However, maintaining a limit order book by a smart contract on the Ethereum

blockchain is costly and tends to be slow, due to the time-consuming mining process,

a complicated matching mechanism of limit order books, and the limited capacity of

the blockchain.

As a first solution, several DEXs have adopted “hybrid” mechanisms that involve

both on-chain and off-chain features.12 However, the hybrid system still uses central-

ized protocols to a certain extent. The second solution is AMMs. As mentioned in the

introduction, an AMM is a pre-determined algorithm that sets a price for order exe-

cution. As it is simpler than a limit-order matching mechanism, it requires much less

11Readers can refer to Antonopoulos (2014) and Antonopoulos and Wood (2018) for more details.
12For example, 0x is built on the so-called relayer mechanism (see Warren and Bandeali, 2017). It pro-

vides an off-chain order book, on which traders can broadcast their intentions and find their coun-

terparties. Since the order book is maintained off-chain, it refreshes swiftly. Once traders agree on a

transaction (i.e., trade execution), the order is settled on the blockchain via smart contracts.



computational capacity, making trade on the blockchain easier and faster.

2.2 Constant Product Market Makers

Liquidity pools and asset prices. Consider token X and token Y. Market makers inject

tokens into an exchange following a certain rule described below. The exchange ag-

gregates locked tokens and creates liquidity pools. Suppose that the exchange reserves

x units of token X and y units of token Y. The CPMM requires the geometric mean

of the liquidity pools to be constant. In particular, the initial liquidity pools define a

constant, k = xy, and the prices for subsequent transactions are determined so that the

product of liquidity pools stay the same at the initial level (before transaction fees are

incorporated).

If a trader wants to buy ∆x of token X by selling ∆y = P∆x of token Y at price

P, she adds ∆y of token Y to the pool and withdraws ∆x of token X. This triggers

the following change in the pools: x → x′ = x − ∆x, and y → y′ = y + ∆y. Since

the geometric mean of the pool must be constant, the price must satisfy the following

equation.

x′y′ = (x− ∆x)(y + P∆x).

The above equation determines P as a function of the current state of the pool, (x, y),

and the trading quantity, ∆x:

P =
y

x− ∆x
.

The larger the quantity the trader wants to buy (∆x > 0), the higher the price she must

pay, i.e., the price is an upward-sloping curve in the trading quantity.



Figure 2: Constant product market makers

Note: This figure illustrates a change in the state of liquidity pools when an incoming market order
is buying ∆x units of token X. The CPMM requires the liquidity pools to stay on the convex curve by
adjusting for a change in token Y or, equivalently, the execution price p.

Also, considering a small trading volume, ∆x → 0, the execution price for an in-

finitesimal trade is given by p ≡ lim∆x→0 P(∆x) = y/x, that is, the relative size of the

liquidity pools. p is referred to as the marginal price of the asset when the liquidity

pools have (x, y). Figure 2 shows a change in the pools’ state caused by the above

transaction: the marginal price is determined by the slope of the curve specified by

k = xy.

Moreover, the pricing algorithm of the CPMM (or AMMs in general) satisfies the

property called path independence, i.e., when the liquidity pools move from one state to

another, the expected execution price is independent of the paths that the pools take.

In the context of our paper, this means that trading a certain amount of assets all at

once is equivalent to splitting orders and trading sequentially.13 Appendix D provides

a formal proof for this point.

13As discussed by Angeris et al. (2019), splitting orders costs more than trading all at once if a trader

must pay a fee for trade execution.



Liquidity providers. When a market maker (or a liquidity provider) supplies liquid-

ity via the CPMM, she is required to lock both token X and token Y. The amount of

supplied liquidity must be adjusted so that the price of an infinitesimal trade does

not change (see Subsection 3.3 for a more detailed analysis). A transaction triggers

(x, y) → (x′, y′), and the change in the value is a source of their profit (or a cost). In

particular, if market maker i injects (xi, yi) before a trade, and the aggregate size of the

pools is (x, y), she obtains the share of the pools, w = pxi+yi
px+y . Once a trade is executed,

the market maker can withdraw her share from the post-trade liquidity pools, (x′, y′),

and realize her returns. On Uniswap, for example, it is free to withdraw liquidity at

any time without lockup periods.14

Constant function market makers. Our main model considers a CFMM. This is a broader

class of AMM characterized by a certain function f : R2
++ → R++ which maps the

current state of the liquidity pools to some constant.15 With the above example, the

execution price P is determined by

f (x, y) = f (x− ∆x, y + P∆x).

f must satisfy some regularity conditions so that P ≥ 0 is uniquely determined by the

above equation (see Subsection 3.3 for formal analyses). Note that the CPMMs are a

special case of the CFMMs with f (x, y) = xy.

3 The Model

14See, for example, https://blog.orbsdefi.com/p/how-to-withdraw-liquidity-from-uniswap
15We assume that the automated market deals with exchanges of two assets but, in general, it can be

defined with n ≥ 2 assets by considering f : Rn
++ → R++.

https://blog.orbsdefi.com/p/how-to-withdraw-liquidity-from-uniswap


3.1 Environment

Consider a trading game in a two-period economy (t = 0, 1) with three types of

traders: informed traders, liquidity traders, and market makers. They trade a single

risky asset with an initial common value v0.

Throughout the paper, we use the term asset to underscore the model’s generality,

and cash (e.g., USD) serves as the numeraire. Alternatively, we can think of the asset as

a digital token (e.g., an ERC-20 token) and cash as another risky token or a stable coin,

with v0 being their relative value. With this interpretation, the asset price represents

the exchange rate between tokens.

Events and traders. One of two possible event types triggers a trade at t = 1: either

an innovation in the value of the asset (a common-value shock) or a liquidity shock (a

private-value shock).16 With probability η, the common value of the asset experiences

an innovation and becomes ṽ = v0(1 + σ̃), where σ̃ = ±σ with the same probability.

Without a loss of generality, we normalize the initial value of the asset to v0 = 1.

There is a continuum of risk-neutral informed traders with a unit measure. When

a common-value shock hits the asset, they immediately observe the realized value of

the shock, sequentially arrive at the market, and trade the asset by choosing one of

two trading venues (defined below). As in conventional market microstructure theory

(e.g., Glosten and Milgrom, 1985), an informed trader sends a single-unit market order

after deciding on her trading venue.

With probability 1− η, a shock hits the private value of liquidity traders. Liquidity

traders are impatient investors with no material information. They are motivated by

factors like hedging needs, margin constraints, and other immediate borrowing and

lending requirements. A private-value shock triggers their needs for immediacy and

16See, for example, Menkveld and Zoican (2017) and Brolley and Zoican (2020) for models with these

shocks as a trigger of transactions.



makes them want to trade. Following Zhu (2014), mass zbuy (resp. zsell) of liquid-

ity buy (resp. sell) market orders arrive at the market, where zbuy and zsell are ran-

dom variables independently and identically distributed on [0, z̄) with mean 0.5z. For

i ∈ {buy, sell}, the random trading size zi can be thought of as the aggregate orders

from n liquidity buyers (each indexed by k), whose trading sizes {zn
i,k} are iid random

variables and add up to zi. In the limit of n → ∞, individual trading size zn
i,k be-

comes infinitesimal and has no impact on the distribution of the aggregate order size

zi. Namely, the joint distribution of zbuy and zsell conditional on each trader’s order

size zn
i,k becomes the same as the unconditional joint distribution of zbuy and zsell.17

We assume that liquidity traders must decide on their venue at t = 0, i.e., before

they enter the market. This is because they are unsophisticated retail investors, and

maintaining multiple accounts on both exchanges (or subscribing to a smart order

router) is costly.18 Appendix B relaxes this assumption and allows them to choose

their trading venues contingent on the sign of a private-value shock.

There is also a continuum of uninformed market makers (liquidity providers) with a

sufficiently large measure. At the beginning of the game, competitively many mar-

ket makers either post a single-unit limit order on a limit-order market or lock one

unit of assets in the liquidity pools of an automated market. At the end of t = 1,

information about ṽ becomes public, and market makers revoke (reprice) their limit

orders and withdraw liquidity from the pools to avoid an adverse selection cost and

an impermanent loss.19

17See the discussion in Zhu (2014) for the formal microfoundation and convergence results at n→ ∞.
18As of July 2021, only a limited number of cryptocurrency exchanges provide order routine services

across CEXs and DEXs. An investor may trade via institutional brokers, but a large portion of cryp-

tocurrency trades are done directly by retail investors.
19Subsection 6.2 justifies liquidity removal by market makers by considering exogenous arbitragers.



Figure 3: Timeline of the game

Figure 3 illustrates the timeline of the game and possible outcomes of the trigger

event.

Exchange platforms. There are two exchange platforms: a CEX and a DEX. The CEX

is a traditional centralized exchange and operates with a continuous limit order book

(LOB). It retains custody of trader funds and is based on a centralized matching al-

gorithm using high-speed information processors. Thus, it provides ultra-fast trade

execution, causing almost no delays.20

In contrast, the DEX handles transactions via a CFMM. As explained in Subsection

2.2, the platform generates liquidity pools by using the provided assets, and a liquid-

ity taker trades against the pools. The execution price is determined by the CFMM

algorithm instead of quotes by market makers.

Trading with the CFMM involves smart contracts on the Ethereum blockchain and

its throughput is lower than the CEX, causing a delay in completing a transaction.21

Following Zhu (2014), a delay in trade execution weighs negatively on the private
20Delays in order execution on centralized exchanges are scaled by microseconds or nanoseconds and

are almost negligible in this paper.
21Aside from the delays in executing transactions on decentralized exchanges, there is a different

source of delays that is common in DEXs and CEXs. If a user has digital tokens and wants to use them



utility of liquidity traders, as they are impatient and eager to fulfill their trading needs

immediately.22 In the model, a liquidity trader on the DEX incurs γσ of delay costs

per unit of trade, where γ represents heterogeneous aversion toward a delay (or need

for immediacy) and γ ∼ U[0, 1]. The delay cost is proportional to asset volatility σ. It

can be seen as margin constraints or unmodeled risk aversion (e.g., Brunnermeier and

Pedersen, 2009; Zhu, 2014).

Although the following discussion regards γ as the delay cost, this interpretation

is not essential to our model. Indeed, we can relax the assumption and allow γ to

take negative values, e.g., γ ∼ U[−γ, 1], with an additional parameter assumption.

γ < 0 means that some traders prefer the DEX to the CEX due to, for example, cyber

security risks on the CEX. Thus, the model can incorporate a variety of differences

between these exchanges in a reduced form. The modeling assumption is innocuous

to traders’ behavior in the equilibrium but leads to different welfare implications, as

discussed in Subsection 5.4.

Solving the model. We solve the model by taking steps backward. We first analyze

traders’ behavior given the market liquidity. Afterward, we consider endogenous liq-

uidity supply. Subsection 3.5 endogenizes liquidity on the CEX with that on the DEX

being fixed, and Section 5 considers endogenous DEX liquidity.

Traders’ behavior is described by their platform choice. Measure βbuy (resp. βsell)

of informed traders buy (resp. sell) the asset on the DEX when ṽ = 1 + σ (resp. ṽ =

1− σ). It turns out that informed traders behave asymmetrically depending on the

trade direction, βbuy , βsell, due to the convex nature of the CFMM. We denote the

to make a payment in the real world, she converts them into fiat currency (e.g., USD) by trading on a

centralized exchange and transfers the funds to her bank account. Although buying fiat currency on the

CEX takes almost no delays, transferring funds can cause some delays. However, this does not affect

the model description because a user incurs this delay no matter where she obtains her tokens.
22Imposing a delay cost on informed traders does not change the qualitative results but adds com-

plexity to our analyses.



fraction of liquidity traders on the DEX as α ∈ [0, 1], which is not contingent on the sign

of a private-value shock, as they decide on the trading venue at t = 0 (see Appendix

B for the case with asymmetric α).

For simplicity, our model does not incorporate fees, such as maker/taker fees and

Ethereum gas fees on the DEX. Also, the possibility of dynamic arbitrage trading af-

ter informed/noise trading is beyond the scope of our one-shot trading environment.

These points are further discussed in Subsection 6.2.

3.2 Trading on the CEX

The partial equilibrium on the CEX with the limit order book is standard and follows

the model by Zhu (2014). We denote the equilibrium bid and ask prices as

Ask = 1 + a, Bid = 1− b.

For brevity, a and −b are sometimes used to refer to the ask and bid prices. Also, the

(effective) bid-ask spread is defined as S = a + b. Following market microstructure

theory, we guess that the bid and ask prices depend on the signal-to-noise ratio of

order flows and denote them as a = a(βbuy, α) and b = b(βsell, α).

Accordingly, the expected profits for an informed trader who trades on the CEX

are given by

πC
I (σ̃) =

σ− a(βbuy, α) if σ̃ = +σ and buys the asset,

σ− b(βsell, α) if σ̃ = −σ and sells the asset.
(1)

Note that the informed trader’s profits are conditional on the realized value of σ̃. Sim-



ilarly, a liquidity trader’s ex-post profits per unit of trading on the CEX are given by23

πC
L,k =

−a(βbuy, α) if k = buy,

−b(βsell, α) if k = sell,
(2)

where subscript k indicates whether the private-value shock induces a trader to buy

or sell the asset. Since each liquidity trader expects to buy and sell with the same

probability, her ex-ante expected profit per unit of trading is

1
2

E

[
∑

k=buy,sell
πC

L,k

]
= −S

2
. (3)

Namely, a liquidity trader expects to pay the (half) bid-ask spread on the CEX.

3.3 Trading on the DEX

Constant function market makers. In this section, we assume that the liquidity providers

supply an exogenous and sufficiently large amount of the asset, denoted as X (see Sec-

tion 5 for endogenous X). The initial size of the cash pool is denoted as C, and the

following discussion derives C as a function of the initial asset pool, X, via the non-

arbitrage condition at the beginning of the game.

If an incoming market order trades δ units of the asset (δ > 0 means a buy order)

23We implicitly assume that a liquidity trader obtains private utility u if she fulfills her trading needs,

with u being sufficiently large (e.g., u > 1 + σ). Therefore, all liquidity traders participate in the market

upon being hit by a shock. u does not affect the equilibrium conditions because a liquidity trader obtains

it no matter which platform she uses.



at cumulative execution price P, the state of the liquidity pools changes as follows.

C → C′ = C + Pδ (4)

X → X′ = X− δ. (5)

The CFMM is defined by function f : R2
++ → R++, which sets the execution price

by requiring the post-trade state of the pools to satisfy24

f (C, X) = f (C + Pδ, X− δ). (6)

We impose the following regularity conditions on f to pin down a unique price.25

Condition 1. The CFMM function f : R2
++ → R++ with initial liquidity pool (C, X)

satisfies the following:

(i) f is differentiable, ∂2 f
∂c∂x exists, and fc(c, x) and fx(c, x) are positive for all c, x > 0;

(ii) If (c, x) is on function f , there exists h : R++ → R++ such that c = h(x; C, X) and h is

decreasing in x; and

(iii) {(c, x)| f (c, x) > k} is a strictly convex set for all k > 0.

Note that the conditions above are satisfied by most of CFMMs in the real world.

For example, a CPMM is the special case with f (C, X) = CX and satisfies all the

regularity conditions.

To establish the model with the coexisting exchanges, we first assume that no arbi-

trage exists at the beginning of the game.

Assumption 1. At the beginning of the trading game, there is no arbitrage, and an infinitesi-

mal trade cannot make a strictly positive profit.

24The assumptions that f is convex and continuously differentiable are sufficient for the following

result. For the proof, we derive weaker conditions for f in Appendix C.
25Appendix C provides additional technical conditions to rule out multiple equilibria and unrealistic

behavior of the equilibrium price.



Note that an infinitesimal trade (δ→ 0) is executed at the marginal price26

p0 ≡
fx(C, X)

fc(C, X)
, (7)

where we denote the partial derivative of f (c, x) with respect to j = c, x as f j. There-

fore, the non-arbitrage condition is given by p0 = E[ṽ] = 1.

For a general CFMM, the non-arbitrage condition implies that there exists a differ-

entiable and increasing function, denoted as g : R++ → R++, such that C = g(X).

This function specifies the initial condition of the cash pool and the CFMM constant k

given the size of the asset X that liquidity providers intend to supply.27

With a CPMM, for example, the price in (7) is given by p0 = C/X, and the non-

arbitrage condition requires the initial state to satisfy C = g(X) = X. Also, this con-

dition pins down the CPMM constant as k = CX = X2. For simplicity, we denote the

following results by using X rather than denoting (C, X) = (g(X), X).

Secondly, we characterize a set of “reachable states” for liquidity pools, (c, x), on

the CFMM curve. Namely, if state (c, x) is on the CFMM curve with the initial condi-

tion (C, X) = (g(X), X), the value of c is expressed by using monotonically decreasing

function h : R++ → R++ as

c = h(x; X). (8)

Equation (8) draws a convex curve of the CFMM. In the case with a CPMM, the above

equation is c = h(x; X) = X2

x because the CPMM curve is specified by k = XC =

X2 due to the non-arbitrage condition. In what follows, we denote c = h(x) unless

otherwise specified.

By using the above functions, we can derive the marginal and expected cumulative

prices for a trade. Proofs for the following results are provided in Appendix C.

26Taking the first-order derivative of equation (6) with respect to δ and setting δ→ 0 yield p0.
27As explained in Subsection 2.2, C = g(X) determines the rule of liquidity provision when market

makers endogenously supply (C, X) in Section 5.



Lemma 1. Given the initial state of the liquidity pools, (g(X), X), and function c = h(x) in

(8), the expected price for a trade with size δ , 0 is given by

P(δ, X) =
1
δ

∫ δ

0

fx(h(X− δ̃), X− δ̃)

fc(h(X− δ̃), X− δ̃)
dδ̃. (9)

Also, the marginal price for an infinitesimal trade after δ units of trade is made is given by

p(δ, X) =
fx(h(X− δ), X− δ)

fc(h(X− δ), X− δ)
. (10)

The marginal price function, p, satisfies the following conditions.28

(i) p is increasing in δ;

(ii) p is decreasing in X if, and only if, δ > 0;

(iii) p is differentiable with respect to both elements, and ∂2 p
∂δ∂X < 0; and

(iv) pδ(m, X) > pδ(−m, X) holds for all m, X > 0

For a fixed initial liquidity X, Condition 1 essentially suggests the monotonicity

and convexity of the marginal price function with respect to trade size δ.

Firstly, the more the trader intends to buy (resp. sell), the higher (resp. lower) the

marginal execution price becomes (condition [i]). Moreover, conditions (ii) and (iii)

imply that ample liquidity lowers the marginal price given the size of a trade when

a trader is buying the asset (δ > 0), while it increases the marginal price for a seller

(δ < 0). In other words, a larger liquidity pool (X) makes the market deeper, and a

market order of a given size has a smaller price impact. Hence, it is appropriate to use

the pool size (X) as the measure of liquidity on the DEX. Finally, condition (iv) implies

the convexity of the price function regarding δ, though the condition is weaker than

the convexity.

28In addition, we can show that (v) A(δ, X) ≡ |p(δ, X)− 1| is log-submodular in (δ, X) for δ , 0. We use

this condition in the formal proof in Appendix C.



With a CPMM, for example, the expected and marginal prices are given by

P(δ, X) =
X

X− δ
and p(δ, X) =

X2

(X− δ)2 . (11)

It is straightforward to check that Lemma 1 holds because ∂p
∂δ = 2X2

(X−δ)2 > 0, ∂p
∂X =

−2δX
(X−δ)3 , and ∂2 p

∂X∂δ = −2X(X+2δ)
(X−δ)4 < 0.

Profits of informed traders on the DEX. Informed traders arrive sequentially to the mar-

ket, and each observes the current state of the liquidity pools to learn how much in-

formed trading has already been conducted. If β̃ measure of informed traders have

already traded on the DEX, the next arriving informed trader executes her order at

marginal price p(β̃, X). As a result, the informed trader’s marginal profit on the DEX,

given that β̃ ∈ {β̃buy,−β̃sell} measure of other informed traders have completed their

transactions, is

πD
I (σ̃, β̃) =

1 + σ− p(β̃buy, X) if σ̃ = +σ

p(−β̃sell, X)− (1− σ) if σ̃ = −σ.
(12)

Note that each informed trader trades one unit of the asset and has an infinitesimal

measure. Thus, she is concerned about the marginal cost (or return) of trading, p,

relative to the return (or cost), ṽ = 1 + σ̃.

Profits for liquidity traders on the DEX. Conditional on the realization of the random

trading size, a liquidity trader with γ expects to obtain the following interim profits

per unit.

E∆z[π
D
L,k(γ)] =

1−E∆z[P(α∆z, X)]− γσ if k = buy,

E∆z[P(α∆z, X)]− 1− γσ if k = sell.
(13)



Note that the mean price, P, matters from the interim perspective, as the trader does

not know the timing of her order execution when she decides on her venue. The

aggregate order size, ∆z = zbuy − zsell, is uncertain for each liquidity trader, and E∆z

is the expectation over ∆z. Since each liquidity trader is infinitesimal, observing her

own trading size does not affect her inference regarding the aggregate order size, zi.

Importantly, the expected price impact of liquidity trading on the DEX tends to be

weaker than that of informed trading. This is because liquidity traders conduct ran-

dom trading, and buy and sell orders tend to cancel out. In contrast, informed traders

trade based on the same information and cluster on the same side of the market.

3.4 Platform Choice

Given liquidity on the DEX and the CEX, the proportions of informed and liquidity

traders who participate in the DEX, {(βi)i=buy,sell, α}, are determined so that (i) the

informed traders become indifferent between the two platforms, and (ii) the liquidity

traders are differentiated by comparing the ex-ante expected profits on each exchange.

We search for an equilibrium where the DEX and the CEX coexist and have a strictly

positive share, i.e., βi, α ∈ (0, 1).

Firstly, informed traders choose their platforms so that the marginal costs on both

exchanges become identical.

1 + a(βbuy, α) = p(βbuy, X), (14)

1− b(βsell, α) = p(−βsell, X). (15)

In both equations, the LHS represents the marginal trading cost on the CEX, while

the RHS is that on the DEX. If the above equations do not balance, marginal informed

traders switch their venue, and βi adjusts so the equations hold. Indeed, the next



section shows that such an equilibrium exists and is unique and stable.29

Secondly, a liquidity trader with cost parameter γ participates in the DEX if, and

only if, the expected profit (conditional on γ) from trading on the DEX surpasses that

from trading on the CEX:30

E

[
∑

k=buy,sell
πD

L,k(γ)

]
≥ E

[
∑

k=buy,sell
πC

L,k

]
= −S, (16)

where the last equality uses (3). By using (13), the above inequality is reduced to

γ ≤ γ∗ ≡
S(βbuy, βsell, α)

2σ
.

The LHS is the expected trading cost on the DEX. Since a liquidity trader buys and

sells with the same probability, the execution price does not affect the expected cost.

However, the delay cost matters because a liquidity trader on the DEX bears it regard-

less of the trading direction. In contrast, the RHS represents the expected trading cost

on the CEX, i.e., the bid-ask spread. Since γ ∼ U[0, 1], we obtain

α = Pr(γ < γ∗) =
S(βbuy, βsell, α)

2σ
. (17)

Liquidity traders with a relatively small γ prefer trading on the DEX, as this exchange

provides a lesser expected price impact with a lower delay cost. The opposite is true

if γ is relatively large.

29Since liquidity takers choose their trading venues by comparing the ex-ante expected prices, it is pos-

sible that the ex-post price on the DEX deviates from the asset’s value. This deviation may cause further

arbitrage trading, and Subsection 6.2 discusses how to incorporate this possibility without changing the

results in our one-shot trading environment.
30We assume that a liquidity trader participates in the DEX when she is indifferent.



3.5 Liquidity on the Centralized Limit-Order Market

We investigate whether conditions (14) to (17) have a unique set of solutions by spec-

ifying the bid and ask prices on the CEX. On the LOB, one of the competitive market

makers is active on the equilibrium path due to the price-time priority, i.e., one mar-

ket maker can post her limit order on the top of the book and be matched with an

incoming trade. We call this trader the CEX market maker. Since other potential mar-

ket makers are willing to post a better price off the equilibrium path, the CEX market

maker posts a competitive quote (see Zhu, 2014 and Baldauf and Mollner, 2020 for the

same setting).

Given the venue choice of traders, the expected profits for the CEX market maker

from posting a and b on each side of the market are

πC
M,ask =

1
2
[
η(1− βbuy)(a− σ) + (1− η)(1− α)za

]
,

πC
M,bid =

1
2
[η(1− βsell)(b− σ) + (1− η)(1− α)zb] .

In both equations, the first term represents a trade with an informed trader, which

occurs with expected mass 1
2 η(1− βi), and the second term shows the case of liquidity

trading, which occurs with expected mass 1
2(1− η)(1− α)z. Following Zhu (2014), we

focus on the equilibrium in which the CEX market maker breaks even on both sides of

the market, leading to the following competitive bid and ask prices.

a = a(βbuy, α) = σ
(1− βbuy)η

(1− βbuy)η + (1− η)(1− α)z
, (18)

b = b(βsell, α) = σ
(1− βsell)η

(1− βsell)η + (1− η)(1− α)z
. (19)

The above prices are potentially asymmetric, as we allow βbuy , βsell. The spread pos-

itively (resp. negatively) reacts to the intensity of informed (resp. liquidity) trading,

because it exacerbates (resp. mitigates) the adverse selection cost for a market maker.



4 Partial Equilibrium with Exogenous DEX Liquidity

We first define and analyze the (partial) equilibrium with exogenous DEX liquidity, X,

as it helps us endogenize X in Section 5.

Definition 1. The partial equilibrium with exogenous DEX liquidity (X) is defined by the pro-

portions of informed and liquidity traders on the DEX, {(βi)i=buy,sell, α}, the bid-ask prices,

(a, b), and the marginal execution prices on the DEX, p, such that (i) the marginal informed

traders satisfy indifference conditions (14) and (15), (ii) the liquidity traders are differentiated

by equation (17), (iii) the bid and ask prices are given by (18) and (19), and (iv) the price on

the DEX is provided by (10) given the initial liquidity pool (g(X), X).

With the bid and ask prices given by (18) and (19), the indifference conditions (14)

to (17) pin down the equilibrium mass of traders on the DEX given X. To obtain an

interior solution, we assume that the expected mass of liquidity trading is sufficiently

large.

Assumption 2. The expected size of liquidity trading satisfies z > z∗ ≡ η
1−η .

Assumption 2 guarantees that market makers do not face extremely severe adverse

selection and the market does not break down.

Liquidity traders. Based on (17), (18), and (19), liquidity traders’ platform choice is

characterized by

2α =
(1− βbuy)η

(1− βbuy)η + (1− η)(1− α)z
+

(1− βsell)η

(1− βsell)η + (1− η)(1− α)z
, (20)

where the RHS is the normalized bid-ask spread.

Lemma 2. (i) Equation (20) obtains a unique interior solution of the fraction of the DEX

liquidity traders, α, as a function of (βbuy, βsell, X). We denote it as α∗ = α∗(βbuy, βsell, X).

(ii) With X being fixed, α∗ is monotonically decreasing in βbuy and βsell.



The fraction of liquidity traders on the DEX decreases as the measure of informed

traders on this exchange increases. When informed traders migrate away from the

CEX to the DEX (βi increases), the bid-ask spread on the CEX tightens. Since the exe-

cution price and delay costs for liquidity trading on the DEX are not directly affected

by βi, the CEX becomes more attractive for the liquidity traders, leading to a lower α∗.

Informed traders. Analogously, the indifference conditions for informed buyers and

sellers are given by

p(βbuy, X) = 1 + σ
(1− βbuy)η

(1− βbuy)η + (1− η)(1− α)z
, (21)

p(−βsell, X) = 1− σ
(1− βsell)η

(1− βsell)η + (1− η)(1− α)z
. (22)

Lemma 3. (i) Equations (21) and (22) yield unique measures of informed buyers and sellers

on the DEX as functions of (α, X). We denote them as β∗i = β∗i (α, X) for i ∈ {buy, sell}.

(ii) With X being fixed, β∗i is monotonically increasing in α.

(iii) β∗buy < β∗sell for all α ∈ (0, 1) and X.

For i ∈ {buy, sell}, β∗i is a unique and stable solution for each indifference condi-

tion in β ∈ (0, 1). The trading intensity of the informed traders exhibits anticipated

reactions to a change in liquidity traders’ behavior. If a larger set of liquidity traders

participate in the DEX (α increases), it exacerbates adverse selection for market mak-

ers on the CEX. It widens the bid-ask spread, encouraging more informed traders to

participate in the DEX (β∗i increases).



Figure 4: Asymmetric price impact

Note: This figure describes the price impact of buy and sell orders of the same size, ∆x, along the CPMM
curve.

One of the novel features of the CFMM algorithm emanates from asymmetry in

execution prices due to its convexity (see Condition 1). Figure 4 illustrates the intu-

ition behind point (iii) by taking the CPMM as an example. A buy order with size

δ = ∆x > 0 moves the initial liquidity pool LP0 upward to LP1,buy, while a sell order

of the same size moves LP0 downward to LP1,sell, both along the curve C = X−1. Since

the curve is convex, the buy order requires a larger adjustment along the y-axis than

the sell order, ∆cbuy > ∆csell.31 The convexity of the CFMM implies that the execution

price is determined so that adding liquidity to the pools bears a smaller price impact

than consuming it. Hence, an innovation in the asset’s value induces a dispropor-

31Although the curve y = k/x is symmetric around x = y, the reaction of y is asymmetric to x± d as

long as d > 0. Moreover, the asymmetric price reaction does not mean the existence of an arbitrage op-

portunity. Buying δ and selling the same amount simply push the liquidity pools back to their original

position, leading to no profits. This logic is true even if we switch the role of cash and the asset.



tional reaction of informed sellers to informed buyers, leading to β∗buy < β∗sell. This

asymmetry generates the following result.

Corollary 1. The midpoint quote on the CEX is biased and is higher than the expected value

of the asset, i.e., Ask+Bid
2 > E[ṽ].

Further implications regarding the informativeness of an order flow and the bid-

ask spread are discussed later.

By using the results in Lemmas 2 and 3, we can express the partial equilibrium

measures of informed and liquidity traders on the DEX as functions of the DEX liq-

uidity, X.

α∗(X) ≡ α∗(β∗buy(α
∗, X), β∗sell(α

∗, X), X), (23)

β∗i (X) ≡ β∗i (α
∗(β∗buy, β∗sell, X), X). (24)

Proposition 1. In the equilibrium, there is a unique set of (α∗(X), β∗buy(X), β∗sell(X)) that

solves equations (20)-(22), and the solutions are stable.

4.1 Liquidity Impact of Automated Market Makers

Analyzing the above equations answers an important question: does additional liq-

uidity on the DEX improve or harm liquidity on the CEX? Since the bid-ask spread on

the CEX is determined by the signal-to-noise ratio of a trade, we must investigate the

reaction of (β∗buy, β∗sell) relative to that of α∗ to a change in DEX liquidity, X.

Proposition 2. (i) The measure of informed buyers on the DEX, β∗buy, is increasing in X.

(ii) The expected measure of informed traders on the DEX,
β∗buy+β∗sell

2 , is increasing in X.

(iii) The proportion of the liquidity traders on the DEX, α∗, is decreasing in X.

(iv) The bid-ask spread on the CEX is decreasing in X.



Proposition 2 shows that informed traders are inclined to participate in the DEX

when it becomes more liquid, whereas liquidity traders tend to use the CEX.

Firstly, informed traders are concerned about the price impact on the DEX, which

is decreasing in X. Thus, larger liquidity pools marginally reduce the cost of informed

trading on the DEX and attract more informed traders. In turn, more active informed

traders on the DEX mitigate the adverse selection cost for the CEX market maker, and

the bid-ask spread declines.

Secondly, a change in X does not directly affect liquidity traders’ behavior, as the

execution price on the DEX does not matter to them in expectation. Hence, facing a

narrower bid-ask spread on the CEX triggered by the migration of informed traders,

more liquidity traders move to the CEX.

This process involves a decline in the bid-ask spread or improved market liquidity

on the CEX, as demonstrated by point (iv) in Proposition 2. Therefore, our model

suggests that liquidity on the DEX complements that on the CEX. This result not only

helps us derive the general equilibrium with endogenous X in the next section but

also provides testable implications discussed in Section 6.

5 Equilibrium with Endogenous DEX Liquidity

This section considers liquidity provision by market makers on the DEX. Prior to the

trading game (at t = 0), each market maker decides whether to supply one unit of the

asset to the liquidity pool. Since the market-making sector on the CEX is competitive

and yields no profit in expectation, it works as an outside option for market makers

on the DEX.

To guarantee the existence of the equilibrium, we assume the presence of passive

liquidity providers on the DEX. They provide some exogenous amount of liquidity,

xpassive > x ≡ z̄η
z(1−η)

, and stay inactive. This assumption is to avoid market break-



down: even if the active liquidity providers supply zero liquidity, the DEX has a posi-

tive amount of liquidity that can absorb the potential size of liquidity-taking orders.32

The aggregate supply of the asset is defined as X ≡ xpassive + 1 × m, where m

denotes the measure of active market makers. We search for the equilibrium value of

X (or, equivalently, m) in the following sections by focusing on the pairs of endogenous

variables (X, α, βbuy, βsell) that satisfy the equilibrium conditions.33

5.1 Market Makers’ Profits on the DEX

When a market maker locks the asset, she must supply c units of cash into the pool,

obtaining w = c+1
C+X share of the aggregate pools.34 She must follow this rule so the

non-arbitrage condition remains true. With a trade of size δ, the post-trade liquidity

pools have C′ and X′ in equations (4) and (5). After a trade, the market maker earns w

share of (C′, X′), realizing the difference from the initial cost as her net profit.

Impermanent loss. With probability η, information-driven traders take liquidity where

they are buying and selling with measures βbuy and βsell, respectively, with the same

probability. Conditional on these events, the expected profit for a market maker, net

32Otherwise, even an infinitesimal trade can have a large price, leading to a corner solution for either

βi or α. The existence of persistent liquidity providers is observed in the real market. See, for example,

Lehar and Parlour (2021).
33In particular, the following analyses focus on the variables, (X, α, βbuy, βsell), that satisfy the

equilibrium conditions on the marginal price and informed trading: p(βbuy(X), X) < 1 + σ and

p(−βsell(X), X) > 1− σ.
34The amount of cash supply is different among market makers and depends on the assumption

regarding the timing of liquidity supply. If we assume that market makers sequentially supply liquidity,

each of them faces different states of liquidity pools. For example, if market maker i supplies x units

of the asset when other market makers have already injected X0 and C0, the current state of liquidity

pools is (xpassive + X0, cpassive + C0). Then, her cash supply must satisfy ci = g(xpassive + X0 + x), which

depends on (X0, C0). It turns out that ci does not affect the equilibrium conditions (Proposition 5), and

thus we do not specify ci for each liquidity provider.



of the initial cost of injecting assets, is given by πD
IT below.

πD
IT =

w
2

 if σ̃ = +σ︷                                                           ︸︸                                                           ︷
g(X) + P(βbuy, X)βbuy + (1 + σ)(X− βbuy)

+

if σ̃ = −σ︷                                                             ︸︸                                                             ︷
g(X)− P(−βsell , X)βsell + (1− σ)(X + βsell)

− (c + 1)

=
w
2
[(

P(βbuy, X)− (1 + σ)
)

βbuy + ((1− σ)− P(−βsell , X)) βsell
]

.

The first and second lines represent the post-trade net value of the liquidity pools,

which involves either a positive or negative shock on ṽ and informed trading. Since

market makers absorb cumulative trading volumes, their profit involves the expected

price, P, rather than the marginal price, p.

Proposition 3. When a trade is triggered by a common-value shock, (i) the market maker’s

expected net profit on the DEX is negative, i.e., πD
IT < 0. (ii) With X being fixed, πD

IT is

decreasing in βi.

The negative profit from informed trading is called impermanent loss (see, for exam-

ple, Angeris and Chitra, 2020). The fact that liquidity is taken by an informed trader

implies that the value of the liquidity pools inevitably declines. This is because an

informed trader always subtracts a more valuable asset from the liquidity pools by

adding a less valuable asset. This result highlights the similarity of the CFMM to

market making on the limit order book, where informed trading involves adverse se-

lection for market makers due to information asymmetry (e.g., Glosten and Milgrom,

1985; Kyle, 1985)

Profits from noise. Liquidity traders cause noise trading, i.e., their behavior is inde-

pendent of the value of the asset. This results in market orders with stochastic size

∆z = zbuy − zsell. The expected net profit of a market maker conditional on a private-



value shock is given by

πD
LT = wE∆z [g(X) + P(α∆z, X)α∆z + (X− α∆z)]− (c + 1)

= wE∆z [P(α∆z, X)α∆z] .

Proposition 4. (i) When a trade is triggered by a private-value shock, the market maker’s

expected net profit on the DEX is positive, i.e., πD
LT > 0.

(ii) πD
LT is increasing in α and decreasing in X.

As in limit-order markets, market makers on the DEX gain from trading with liq-

uidity traders because uninformed liquidity trading improves the value of the liq-

uidity pools. The strictly positive profits emanate from the liquidity pool of cash.35

Since the execution price adjusts the post-trade liquidity pools along the convex curve

f (C, X), Jensen’s inequality implies that E[P(α∆z)α∆z] > 0. Therefore, the positive

impact of liquidity trading is hard-wired in the CFMM’s convex pricing algorithm and

works as an implicit reward for liquidity providers.36 This profit mechanism is mag-

nified when the volatility of liquidity trading (α) is large. In contrast, greater liquidity

(X) diminishes the variation in liquidity trading and reduces πD
LT.

The profit mechanism in Proposition 4 is absent in the literature on automated mar-

ket makers. The existing theory has analyzed how the price in an automated market

converges to an exogenous reference price, where arbitragers facilitate this conver-

gence. We introduce liquidity or noise traders following the microstructure literature

(e.g., Grossman and Stiglitz, 1980; Black, 1986; DeLong et al., 1990) and show that they

play an important role in motivating liquidity provision even without fee rebates to

market makers.
35Since liquidity buy and sell orders are netted out and are independent of σ̃, liquidity trading does

not change the expected value of the asset pool (E[X′] = X− αE[∆z] = X).
36See Subsection 6.2 for the possibility of subsequent arbitrage trading after the revelation of ṽ, which

tries to bring the liquidity pools back to their initial state.



5.2 Liquidity Provision on the DEX

The expected profit from providing liquidity on the DEX is the combination of im-

permanent loss and the profit from noise trading, which occur with probability η and

1− η, respectively.

πD
M(X) = ηπD

IT(X) + (1− η)πD
LT(X). (25)

Note that each market maker is infinitesimal and does not incorporate the impact of

her liquidity provision on the aggregate liquidity, X, as well as traders’ behavior, α∗(X)

and β∗i (X) for i ∈ {buy, sell}. Since we assume a free entry condition for the market-

making sector, the equilibrium size of the liquidity pool is determined by the break-

even condition, πD
M = 0.

Proposition 5. Suppose that (X, α, βbuy, βsell) satisfy the equilibrium conditions.

(i) Given βi and α, the market maker’s expected profit is decreasing in X when πD
M ≥ 0.

(ii) Given βi and α, there is at most one X ∈ [xpassive, ∞) such that πD
M(X) = 0. We denote it

as X∗ = G(α, βbuy, βsell) if such X exists in X ∈ [xpassive, ∞). If a solution for πD
M(X) = 0

does not exist in [xpassive, ∞), πD
M(X) < 0 for all X ∈ [xpassive, ∞). In this case, we define

X∗ = xpassive(= G(α, βbuy, βsell)). In both cases, X∗ is stable.

(iii) X∗ is weakly increasing in α and weakly decreasing in βi.

Given the behavior of traders, the expected profit for each market maker monoton-

ically decreases with the amount of the asset that is locked (for πD
M ≥ 0). As a larger

number of liquidity providers participate, the individual profit becomes more diluted.

Proposition 5 suggests that there is a unique and stable X∗ that solves the break-

even condition. As long as πD
M > 0, more liquidity providers participate in the DEX

and pushes up the value of X, reducing πD
M. This process continues until πD

M ≤ 0. In

contrast, if πD
M < 0, liquidity providers stop supplying liquidity, and X declines until

πD
M ≥ 0 holds. Therefore, the equilibrium is determined by the break-even condition,



πD
M = 0, and it is stable.

Moreover, Proposition 5 implies that the amount of liquidity rises with an exoge-

nous change in α, whereas it declines when βi increases. The intuition follows the tra-

ditional discussions on adverse selection: informed trading relative to liquidity trad-

ing makes it more costly for market makers on the DEX to supply liquidity.

By using the results in Section 4 and Proposition 5, we define the equilibrium with

endogenous DEX liquidity as follows.

Definition 2. The equilibrium with endogenous DEX liquidity (X) is defined by the propor-

tions of informed and liquidity traders on the DEX, {(βi)i=buy,sell, α}, DEX liquidity supply,

X, the bid-ask prices, (a, b), and the marginal execution prices on the DEX, p, such that (i)

the marginal informed traders satisfy indifference conditions (14) and (15), (ii) the liquidity

traders are differentiated by equation (17), (iii) the bid and ask prices are given by (18) and

(19), (iv) the price on the DEX is given by (10), and (v) the market makers break even on the

DEX.

Mathematically, the equilibrium can be obtained by solving the fixed point problem

regarding X∗:

X∗ = G(α∗(X∗), β∗buy(X∗), β∗sell(X∗)), (26)

where α∗ and β∗i are given by equations (23) and (24), and G is defined by Proposition

5.

Proposition 6. A unique stable equilibrium with endogenous liquidity supply (X∗, α∗, β∗buy, β∗sell)

exists as a solution of the fixed-point problem in (26).

The existence of equilibrium is guaranteed by the continuity of G, α∗(X), and β∗i (X)

and their behavior at X → ∞ (see Appendix C for the formal proof).

Intuition follows from the disproportional reactions of informed and liquidity traders

to changes in X attested by Proposition 2. When the DEX obtains more liquidity (X

on the LHS of [26] increases), we know from Proposition 2 that the average measure



of informed traders on the DEX increases, whereas the measure of liquidity traders

declines. These reactions diminish the profit of the DEX liquidity providers. Based on

Proposition 5, they hold back from supplying the asset, causing a decline in the RHS

of (26). Stability is guaranteed by Proposition 5.

5.3 Comparative Statics

To gauge the joint reaction of the traders’ behavior and market liquidity to variations

in an exogenous parameter, we numerically analyze the fixed-point problem in (26),

as it is not analytically tractable. In what follows, we take the volatility of the asset,

σ, as a source of exogenous variation. Qualitative results do not change when we use

different values for other deep parameters of the model, η and z.

The following analyses adopt the CPMM algorithm, f (C, X) = CX, as the leading

example of a CFMM. This is a natural starting point, given that more than 80% of

transactions are handled by CPMMs on Uniswap, Sushiswap, and PancakeSwap in

the real financial market.

A higher volatility of the asset implies that informed traders possess a greater in-

formational advantage over market makers, and adverse selection worsens both on

the DEX and the CEX. This confounds liquidity provision by DEX market makers,

leading to a decline in X∗, as well as a wider effective bid-ask spread on the CEX. The

above changes directly affect informed trading (β∗buy, β∗sell; via Lemma 3), whereas the

measure of liquidity trading (α∗) is only indirectly affected (see equation [20]).

As it becomes more costly to trade on both exchanges, the reaction of β∗buy and β∗sell

can be ambiguous. Panel A of Figure 5 shows that the impact of DEX liquidity (X∗)

exceeds that of CEX liquidity (S; the bid-ask spread) for buying informed traders, lead-

ing to a decline in β∗buy. In contrast, β∗sell shows the opposite reaction to σ. Moreover,

since β∗sell exhibits a stronger (positive) reaction to σ than the negative reaction of β∗buy,

the DEX involves more informed trading in expectation, i.e., β∗buy + β∗sell increases.



Figure 5: Reaction of traders and liquidity to σ

Note: These figures are illustrated by using z = 2.0 and η = 0.3.

Numerical result 1. When the asset becomes more volatile, informed sellers tend to cluster

on the DEX and informed buyers on the CEX. The net effect is positive in the sense that

the outflow of buyers is dominated by the inflow of sellers to the DEX.

Intuitively, the convexity of the CFMM makes it less costly to add liquidity to the pool

than to consume it. The asymmetric price impact means that an incentive to migrate

(or stick) to the DEX is stronger for informed sellers. In other words, informed buyers

exhibit a stronger reaction to a negative change in X: they are more eager to switch to

the CEX. As a result, informed traders on the DEX exhibit an asymmetric reaction to a

volatility shock. Namely, when selling (resp. buying) the asset, informed traders tend

to cluster on the DEX (resp. the CEX).



Next, consider the behavior of liquidity traders. Panel B of Figure 5 shows that

they tend to cluster on the CEX when the asset becomes more volatile. They compare

the delay cost on the DEX (γσ) to the expected trading cost on the CEX (S; the bid-ask

spread). Since both of them are proportional to the asset volatility, σ has no direct im-

pact on liquidity traders’ venue choice. Instead, what matters is the normalized bid-ask

spread, S
2σ , which captures the adverse selection problem for the CEX market maker

that stems from traders’ behavior.

In the above discussion, we have established that informed traders tend to gravi-

tate toward the DEX in expectation (i.e.,
βbuy+βsell

2 increases), which imposes more se-

vere adverse selection on DEX market makers while mitigating that on the CEX mar-

ket maker. It tightens the normalized bid-ask spread on the CEX and attracts liquidity

traders to that exchange.

Numerical result 2. When the asset becomes more volatile, liquidity traders tend to cluster

on the CEX.

Finally, Panels C and D of Figure 5 summarize the reaction of market liquidity to a

change in asset volatility incorporating the above behavior of traders. Through their

venue choice, traders have indirect effects and undermine the direct impact of σ on

market liquidity, but they cannot offset or dominate the direct effect.

Proposition 7. When the asset becomes more volatile, the DEX liquidity supply, X∗, de-

clines.37

Numerical result 3. When the asset becomes more volatile, liquidity on the CEX, as mea-

sured by the bid-ask spread, deteriorates. The normalized bid-ask spread on the CEX,

however, improves.

The normalized bid-ask spread narrows because informed traders, in expectation,

tend to cluster on the DEX, while liquidity traders are more likely to move to the CEX.

37This proposition is not limited to CPMMs and holds for CFMMs that satisfy Condition 1.



In contrast, the effective bid-ask spread on the CEX and the liquidity pools on the DEX

positively correlate and deteriorate when the asset becomes more volatile.

5.4 Welfare

Finally, we provide a positive analysis regarding trader surplus in this economy. The

zero-profit conditions of market makers imply that trading is a zero-sum game. As

a result, a (negative) trading surplus arises due to the delay costs on the DEX (see

Appendix C.8 for the welfare of each type of trader).

Proposition 8. The expected ex-post trading surplus is proportional to the squared normalized

bid-ask spread and is given by

W = −1− η

2

(
S

2σ

)2

zσ. (27)

Trading profits and costs cancel each other out due to the zero profit condition

of market makers, i.e., a trade is just a transfer of money between liquidity traders

and informed traders. The negative private utility from the delay costs drives W. It

depends on α2 =
(

S
2σ

)2
because (i) the measure of liquidity traders on the DEX is

proportional to α, and (ii) each incurs E[γ|γ < α] = α
2 of delay costs in expectation.

Proposition 8 indicates that whether the advent of the DEX improves welfare de-

pends on the modeling assumption of liquidity traders. As mentioned in Subsection

3.1, we can introduce negative values for γ representing traders’ aversion toward the

CEX due to, for example, cyber-security risks. With γ < 0, adding the DEX improves

the aggregate welfare, as a portion of liquidity traders can avoid the risk by trading on

the DEX.

Although the sign of the DEX’s welfare impact depends on the modeling assump-

tion, its magnitude can be measured through the bid-ask spread on the CEX, S. This is

because the fraction of liquidity traders using the DEX and incurring the welfare cost



(or enjoying the benefit) is proportional to S. An increase in the bid-ask spread on the

CEX upon the introduction of the DEX suggests a large welfare impact.

6 Discussion

6.1 Empirical Implications

Novel empirical implications follow from our model. As exogenous variations, we can

consider, for example, changes in asset volatility σ (or the degree of adverse selection)

or ERC-20 tokens cross-listed on some CEXs and DEXs.38

Firstly, the equilibrium prices of the asset on the CEX are affected by an automated

market.

Conjecture 1. With the addition of a DEX with the CFMM, the midpoint of the bid and ask

prices on the CEX tends to be higher than the expected value of the asset.

The first conjecture is a natural consequence of the convex pricing of the CFMM

and βbuy < βsell, theoretically attested to by Corollary 1. A large body of literature

examines asymmetric bid and ask prices, such as Ho and Stoll (1981) and Stoll (1989).

In terms of the bid-ask spread that stems from adverse selection, studies have high-

lighted the asymmetry due to microstructure constraints, such as the discrete tick size

(Anshuman and Kalay, 1998), and the asymmetric distribution of the value of assets

(Bossaerts and Hillion, 1991). Our model proposes a new market structure that brings

about the asymmetric prices in traditional limit-order markets and suggests that the

midpoint tends to over-value the market expectation of the asset’s value.

Moreover, the informativeness of the order flow tends to be asymmetric between

exchanges.

38Uniswap started trading the ETH/WBTC pair on December 2020. WBTC is an ERC-20 token that

is pegged to Bitcoin. Thus, the listing of WBTC on Uniswap can be seen as the advent of a DEX for the

Ethereum and Bitcoin pair, which is previously traded on centralized exchanges.



Conjecture 2. All else being equal, a higher asset volatility (or the degree of adverse selection)

increases the informativeness of the order flow on the DEX and makes the order flow on the

CEX less informative.

This conjecture is based on Subsection 5.2. A higher degree of adverse selection

makes it costly to trade on both venues. Informed traders tend to cluster on the same

side of the market on the DEX, bearing a larger price impact, compared to liquidity

traders, whose behavior is random. Thus, the order flow on the DEX tends to be

information driven, while that on the CEX tends to be private-value driven.

Related to the above conjecture, buy and sell orders may react in different manners

even if the magnitude of a trigger event is the same. The intuition follows from the

combination of the facts that buying the asset bears a higher cost than the return from

selling it (Corollary 3) and that informed traders tend to be more reactive than liquidity

traders (Proposition 2). These facts imply that the informativeness of an order flow is

asymmetric between sell and buy orders.

Conjecture 3. All else being equal, when the asset becomes more volatile (or the degree of ad-

verse selection), sell orders on the DEX are more likely to be followed by a negative innovation

in returns than buy orders to be followed by a positive innovation. The opposite is true on the

CEX.

Moreover, the above prediction regarding the informativeness of the order flow

has direct implications for market liquidity.

Conjecture 4. All else being equal, an increase in the asset volatility (or the degree of adverse

selection) is associated with a decline in the amount of the asset locked in the DEX, a wider

effective bid-ask spread, and a narrower normalized bid-ask spread on the CEX.

For example, our model predicts that the correlation between the effective bid-ask

spread for the ETH/BTC pair on centralized exchanges (e.g., Coinbase) and its return

volatility will be stronger after Uniswap starts trading the ETH/WBTC pair compared

to the pre-Uniswap environment.



6.2 Arbitrage Trading and Liquidity Withdrawal

When information about ṽ becomes public at the end of t = 1, the marginal price on

the DEX can differ from ṽ. This deviation induces (unmodeled) arbitragers to trade un-

til the arbitrage opportunity disappears. However, since market makers understand

these arbitragers’ behavior, as well as the realized value of ∆z, they know that staking

liquidity causes impermanent loss. At the end of t = 1, it is optimal for market makers

to withdraw their liquidity since there is no Ethereum gas fees for liquidity removal in

the model.39

Conditional on this behavior at the end of t = 1, the ex-ante expected return for liq-

uidity providers is given by πD
M in (25). Due to the liquidity withdrawal, only passive

liquidity providers stay on the DEX at the end of t = 1, triggering X → xpassive. After

t = 1 , the price on the DEX converges to ṽ due to a trade between passive liquidity

providers and arbitragers, both of whom are unmodeled and exogenous in our model.

This setting ensures our environment of the one-shot trading game.

6.3 Limitations of the Model

Fees. Introducing fees does not change our main discussions. On the DEX, liquidity

takers pay trade execution fees, c, to liquidity providers. Moreover, all transactions on

the DEX must be on the blockchain, meaning that they incur Ethereum gas fees, g. For

example, informed traders on the DEX pay p(βbuy) + g + c when buying the asset and

obtain p(−βsell)− g− c when selling it. Conditional on liquidity removal at the end of

t = 1, each liquidity provider obtains wc
(

η
βbuy+βsell

2 + z(1− η)α
)
− g in expectation

on top of πD
M in (25) due to the fees. The results are quantitatively different from the

main model, but the qualitative results stay the same.

39In Lehar and Parlour (2021), liquidity providers are assumed to stay in the pools after noise trading

to earn transaction fees from arbitrage trading. Capponi and Jia (2021) consider liquidity providers who

withdraw liquidity to avoid the impermanent loss with Ethereum gas fees.



However, these exogenous fees lead to several modeling issues. Firstly, the Ethereum

gas, g, is paid in ETH, and its price may endogenously change in the equilibrium. Also,

arbitragers may take profit opportunities only if the return is larger than fees, c + g.

Investigating their behavior after the noise trading is cumbersome, as noise trading

causes random shifts in liquidity pools and thus the profit for arbitragers. Liquidity

providers must incorporate this choice of arbitragers and compare the return from the

trading fee and impermanent loss with the Ethereum gas for liquidity withdrawal.

Furthermore, introducing heterogeneous fee environments to each exchange makes

the comparison between platforms arbitrarily biased. Incorporating all these points

would be an interesting extension but beyond the scope of our analyses.

Information revelation. One of the limitations of our model is that it does not accom-

modate strategic informed traders with a long information horizon. When traders act

on long-lived private information, we need to incorporate the public nature of data on

blockchain. As mentioned in Appendix A, trading intentions on the DEX are stored

in the mempool and wait for validation by blockchain miners. In most cases, the state

of the mempool is publicly disseminated and observable for miners and traders. As

suggested by Malinova and Park (2017), Daian et al. (2019), and Park (2021), a trader

may extract other traders’ private information by observing the mempool, generating

front-running risk.

In our model, each informed trader is small and does not incorporate information

revelation by the blockchain mempool. Such long-run behaviors and a strategic aspect

of informed trading (e.g., Kyle, 1985) must be embedded in future research.

Endogenous delay. We cut corners in our analyses of delays on the DEX by assuming

that a liquidity trader incurs a linear delay cost per transaction. This can be thought of

as a situation where the mass of liquidity trading is sufficiently small compared to the

block capacity so that all trades are settled with a constant (and deterministic) delay,



i.e., the block time.

In general, however, a trader can shorten the expected waiting time by paying a

higher transaction fee to blockchain miners. Since a miner processes better-paying

transactions first, proposing a higher fee can move a trader forward in the queue. For

example, Huberman et al. (2021) formulate the expected delay cost (the sum of the

waiting time and fee payment) as an increasing function of the measure of traders

waiting for verification.

Endogenizing the delay cost will certainly add new implications to our model. At

the same time, however, we believe that the endogenous delay cost strengthens our re-

sults. If the delay cost is an increasing function of the measure of liquidity traders on

the DEX (α), as suggested by Huberman et al. (2021), liquidity traders will be discour-

aged from participating in this exchange, leading to an even larger outflow to the CEX.

Thus, an endogenous delay cost may work as an additional driving force to mitigate

adverse selection for CEX market makers and improve CEX market liquidity.

7 Conclusion

This paper studies the equilibrium impact of adopting a decentralized exchange (DEX)

with a novel market-making algorithm called a constant function market maker (CFMM).

In the real financial market, DEXs with CFMMs and traditional centralized exchanges

(CEXs) with limit-order mechanisms interact with each other. We construct a model

to describe such a coexistence where traders are endogenously differentiated between

the DEX and the CEX depending on their trading motives, i.e., informed or unin-

formed trading.

The model first shows that the amount of liquidity locked in the DEX has a positive

impact on CEX liquidity (the bid-ask spread). We also characterize the profit function

of market makers on the DEX who supply the asset and cash following the CFMM



algorithm. Based on the derived profit function, we endogenize the amount of liq-

uidity on the DEX and investigate how the DEX and CEX liquidity jointly react to an

exogenous shock. The model proposes novel empirical implications that rely on the

environment with the coexisting platforms.

In our model, we focus on a one-shot trading environment and abstract away from

long-lived private information and sequential trading. When the information horizon

becomes longer, informed traders must incorporate the speed of information revela-

tion via their orders (as in Kyle, 1985). Moreover, price discovery in the long run is one

of the two pillars that determine trader welfare. Thus, constructing a long-run model

based on the current analyses is a topic for future research.
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Appendix

A Blockchain Technology

The blockchain can be seen as a novel way of managing and tracking transactions in-

formation. In the traditional world, we typically maintain a ledger that records partic-

ipants’ state information in a centralized manner, e.g., a bank acts as an intermediary.

Bilateral transactions with no intermediation by a credible third party incur asymmet-

ric information and settlement risk.

In contrast, on the blockchain platform, a ledger is not held by a particular en-

tity, but is distributed across all participants in the network, called record keepers or

blockchain miners. The distributed ledger system requires information about blockchain

users to be a consensus among all record keepers. This highlights its first difference

from traditional transactions, in which only a centralized authority keeps track of in-

formation. Due to its distributed nature, the blockchain is robust to a single point of

failure and does not incur costs of building credibility.

A transaction with a distributed record-keeping system by blockchain goes as fol-

lows. Suppose that Alice wants to buy a cup of coffee at Bob’s cafe by paying Bitcoin.

Information about this transaction must be validated by blockchain miners. More pre-

cisely, the transaction is added to a block by a miner. A sequence of blocks are en-

crypted and become a blockchain. In the Bitcoin blockchain, for example, each miner

in the network maintains a temporary list of unconfirmed transactions, called a mem-

pool. Transactions in the mempool are yet to be recorded on the blockchain, and infor-

mation on the mempool is public to the network. A miner picks one of the transactions

in the pool and tries to validate it by executing costly computation following a certain

algorithm. The fastest miner who solves the problem adds transaction information to

a block (i.e., she mines a block). The reward for mining a block is a fee: when Alice



initiates a transaction, she attaches a fee to her transaction, and the validating miner

obtains the attached fee.40

In general, it is extremely difficult for one miner in the network to overturn the

consensus. In the case of Bitcoin or Ethereum, for example, they leverage their com-

puting power to solve a time-consuming cryptographic problem. This process is called

proof of work (PoW), and the miner who performs it fastest is entitled to add a new

block a chain.41 Of course there can be multiple chains of blocks, because each miner

can choose to which blockchain she adds a newly mined block. Following Nakamoto

(2008), however, the longest chain is regarded as a valid chain. Therefore, if a mali-

cious agent attempts to add fraudulent information to the transaction history (e.g., a

double-spending problem), she must outpace all miners in the network and secretly

generate a longer chain than other chains, which requires prohibitively high comput-

ing power. That is, information on the blockchain is (almost) free from tampering.

Moreover, Ethereum allows users to add complex scripts to the blockchain which

describe the conditions under which transaction is verified and recorded. It implies

that a transaction takes place only if the conditions in the code are fulfilled, and it is

done automatically without any centralized third-party agencies. This type of auto-

mated contracts are called a smart contract following Szabo (1997).

40A miner also obtains a block reward, which is a constant amount of Bitcoin (or other cryptocur-

rency in other blockchains), when she mines a block. Although the block reward incentivizes miners to

leverage their computing power, the amount of reward periodically shrinks and converges to zero in

the future.
41There are several ways to reach a consensus, and different blockchains (including ETH 2.0) adopt

different processes. For example, Saleh (2021) analyzes the viability of the proof of stake (PoS).



B Contingent Platform Choice

In this appendix, we check the robustness of our results by relaxing the assumption

regarding liquidity traders’ venue choice. We allow liquidity traders to choose their

trading venue contingent on the realized sign of a private-value shock. In the follow-

ing argument, we assume that the liquidity traders can choose their venue at t = 0

upon learning her trading size (i.e., buying or selling the asset). Due to the convexity

of the CPMM pricing, we focus on the equilibrium in which the fractions of buying

and selling liquidity traders on the DEX are asymmetric and given by αbuy ∈ (0, 1)

and αsell ∈ (0, 1), respectively.

By applying the same logic as the previous sections, informed traders’ indifference

conditions are given by

1 + a(βbuy, αbuy) = p(βbuy), (28)

1− b(βsell, αsell) = p(−βsell), (29)

where p is given by equation (9), and the ask and the bid prices are given by (18) and

(19) with asymmetric α. As a result, the equilibrium measure of informed buyers and

sellers can be expressed by reusing the previous equations.

Corollary 2. Given α ≡ (αbuy, αsell), the equilibrium measures of informed buyers and sellers

on the DEX, (β∗buy, β∗sell), solve the indifference conditions in (28) and (29). There exist a

unique set of solutions and they are stable. β∗i is increasing in X, σ, and αi for i ∈ {buy, sell}.

Thus, the reaction of informed traders in the partial equilibrium stays the same as

the previous case with symmetric α in Proposition 1.

Now, consider the venue choice for liquidity traders. When a liquidity trader buys

(resp. sells) the asset on the CEX, her trading cost (resp. reward) is the ask (resp. bid)



price. In contrast, she pays or obtains the following symmetric price on the DEX:

Pnoise(αbuy, αsell) = E(zbuy,zsell)

[
P(αbuyzbuy − αsellzsell)

]
,

where E(zbuy,zsell)
is the expectation regarding the random variables zi. As an example,

assuming zi ∼ U[0, z] and the CPMM generates the following explicit formula:

Pnoise(αbuy, αsell) = E(zbuy,zsell)

[
X

X− (αbuyzbuy − αsellzsell)

]

=
X

z2αbuyαsell
log

(X + αsellz)X+αsellz(X− αbuyz)X−αbuyz

XX(X− z∆α)X−z∆α
. (30)

When α is symmetric, the net expected amount of liquidity trading is zero, as zbuy

and −zsell are symmetrically distributed, and buy and sell orders are netted out. In

contrast, the asymmetric behavior of buy and sell liquidity traders prevents the orders

from completely offsetting each other.

When deciding on the trading venue, a liquidity trader with delay cost γ compares

the trading cost on the DEX (the LHS) and the CEX (the RHS):

γσ ≷

1 + a(βbuy, αbuy)− Pnoise(αbuy, αsell) if a ”buy” liquidity shock hits,

Pnoise(αbuy, αsell)− (1− b(βsell, αsell)) if a ”sell” liquidity shock hits.

Since γ uniformly distributes over [0, 1], we obtain the following:

Corollary 3. Given (βbuy, βsell), the equilibrium measures of liquidity buyers and sellers on

the DEX are given by the solution of the following equations.

αbuy =
1 + a(βbuy, αbuy)− Pnoise(αbuy, αsell)

σ
,

αsell =
Pnoise(αbuy, αsell)− (1− b(βsell, αsell))

σ
.



For i ∈ {buy, sell}, αi is decreasing in βi and increasing in αj for j , i.

The above result shows that the reaction of αi in the partial equilibrium is the same

as the previous analyses. The additional result brought by the asymmetric α is the

strategic complementarity between liquidity buyers and sellers. Namely, liquidity

buyers are more willing to trade on the DEX when more liquidity sellers participate in

the DEX, and vice versa. This is because a larger trading volume on the opposite side

of the market offsets the buy liquidity orders, leading to a smaller shift in the liquidity

pools and a weaker price impact. Therefore, liquidity begets liquidity on the DEX, as

in the traditional limit order markets (e.g., Pagano, 1989).

Finally, the expected profits for a market maker on the DEX is given by

πD
M(X) =

wη

2

[(
P(β∗buy)− (1 + σ)

)
β∗buy + ((1− σ)− P(−β∗sell)) β∗sell

]
(31)

+ w(1− η)E[Pnoise(αbuy, αsell)(αbuyzbuy − αsellzsell)] (32)

Once again, it is easy to check that πD
M,IT < 0 and πD

M,LT > 0, meaning that a market

maker loses from informed trading and gains from liquidity trading. A larger mass of

informed trading on the DEX, as well as a higher volatility of the asset, reduces DEX

market makers’ profits by worsening adverse selection.



Figure 6: Reaction of informed and liquidity traders

Note: This figures are illustrated by using z = 2.0 and η = 0.3. They are robust to other parameter
values, as long as it holds that z > z∗.

Numerical result. In what follows, we take the CPMM as an example to see the ro-

bustness. Figure 6 plots the reaction of informed traders (the left panel) and liquidity

traders (the right panel) on the DEX to an increase in the volatility of the asset. The

asymmetric reaction of informed buyers and sellers on the left panel shows that the

result in the previous analyses is robust to a change in the assumption on liquidity

traders’ venue choice. The right panel, however, shows that allowing a contingent

venue choice adds a new implication regarding liquidity traders’ behavior on the DEX.

Numerical result 4: When the asset becomes more volatile, liquidity buyers tend to cluster

on the CEX, while liquidity sellers tend to cluster on the DEX. The net effect is negative,

i.e., outflow of liquidity traders from the DEX dominates inflow to the DEX.

The net behavior of liquidity traders αbuy + αsell is different from that of informed

traders. Intuitively, a liquidity trader on the DEX is not directly affected by the con-

vexity of the CPMM algorithm per se, as she is uncertain about the aggregate trading



volume (given by [30]). Thus, the asymmetric reaction of liquidity traders is driven by

the asymmetric reaction of informed traders, that is, βbuy and βsell. Since the expected

mass of informed traders increases on the DEX, the bid-ask spread on the CEX shrinks

which, in turn, induces liquidity traders to participate more on the CEX in expectation.

Therefore, αbuy + αsell declines with σ.

Figure 7: Reaction of market liquidity

Note: This figures are illustrated by using z = 2.0 and η = 0.3. They are robust to other parameter
values, as long as it holds that z > z∗.

Given the venue choice by traders, Figure 7 shows the reactions of market liquidity.

The left panel shows the comparative static of DEX liquidity, measured by X∗, while

the right panel illustrates the bid-ask spread (S) and the normalized bid-ask spread

(S/σ). Since the net behavior of liquidity traders stays the same as the previous sec-

tions, so does the impact of the asset volatility on market liquidity.



Internet Appendix

C Proofs

In addition to the regularity conditions in Subsection 3.3, we assume the following

technical condition to guarantee the uniqueness of the equilibrium and rule out ab-

normal behavior of prices. All conditions lead to the pricing function in Lemma 1

which provides intuition for the regularity conditions.

Condition 2 (Technical conditions). The CFMM function f : R2
++ → R++ with initial

liquidity pool (C, X) satisfies the following:

(v) fx(h(X−δ;C,X),X−δ)
fc(h(X−δ;C,X),X−δ)

is decreasing in X if and only if δ > 0, convex in δ, and differentiable

with respect to δ and X. Moreover, ∂
fx(h(X−δ;C,X),X−δ)
fc(h(X−δ;C,X),X−δ)

/∂X is decreasing in δ ;

(vi) a(δ, X) ≡ | fx(h(X−δ;C,X),X−δ)
fc(h(X−δ;C,X),X−δ)

− 1| is log-submodular in (X, δ).

C.1 Proof of Proposition 1

First, let us show that α∗(βbuy, βsell, X) uniquely exists. Equation (20) is

α =
S(βbuy, βsell, α)/σ

2
=

1
2

[
(1− βbuy)η

(1− βbuy)η + z(1− α)(1− η)
+

(1− βsell)η

(1− βsell)η + z(1− α)(1− η)

]
.

(33)

It holds that S(βbuy, βsell, 1) = 2σ. Thus, the above equation has α = 1 as a solution.

Also, from the indifference conditions for informed traders, 0 < βi < 1 for all α ∈

[0, 1]. Now, observe that (33) is equivalent to:

1− α =
z(1− α)(1− η)

2

[
1

(1− βbuy)η + z(1− α)(1− η)
+

1
(1− βsell)η + z(1− α)(1− η)

]
.

When α , 1,
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1 =
z(1− η)

2

[
1

(1− βbuy)η + z(1− α)(1− η)
+

1
(1− βsell)η + z(1− α)(1− η)

]
(34)

holds. Let the right hand side of this equation be g(α). Then, g(0) < 1. Moreover,

g′(α) =
z(1− η)

2

[
z(1− η)

((1− βbuy)η + z(1− α)(1− η))2 +
z(1− η)

((1− βsell)η + z(1− α)(1− η))2

]
> 0

holds. Hence, an interior solution α∗ exists if and only if g(1) > 1, which is equivalent

to z > z̃ with

z̃ =
2η

1− η

(1− βbuy)(1− βsell)

2− βbuy − βsell
.

For any βbuy, βsell,z̃ < z∗ = η
1−η holds. Hence, Assumption 1 implies g(1) > 1. This

also shows that α∗ is unique if it exists. The negative impact of βi on α∗ in the partial

equilibrium is straightforward.

Next, let us show that β∗i (α, X) uniquely exists. Observe that

{
1 + σ− p(βbuy)

}
(1− βbuy)η{

p(βbuy)− 1
}
(1− η)z

= 1− α

holds. Since LHS is decreasing in βbuy and can take any positive value, there is an

unique solution β∗buy(α, X). Moreover, this implies that β∗buy(α, X) is increasing in α.

Following a similar argument, we can prove that β∗sell(α, X) uniquely exists and is

increasing in α. Furthermore, observe that

{1 + σ− p(β)} (1− β)η

{p(β)− 1} (1− η)z
<
{p(−β)− (1− σ)} (1− β)η

{1− p(−β)} (1− η)z

holds for β > 0. Hence, β∗buy(α, X) < β∗sell(α, X) must hold.
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C.2 Proof of Proposition 2

Equation (34) implies:

0 =

∂β∗buy
∂X η + ∂α∗

∂X z(1− η)

((1− β∗buy)η + z(1− α∗)(1− η))2 +

∂β∗sell
∂X η + ∂α∗

∂X z(1− η)

((1− β∗sell)η + z(1− α∗)(1− η))2

holds. By the conditions derived in Proposition 1, observe that:

− (1 + σ)η
∂β∗buy

∂X
− z(1− η)

∂α∗

∂X

= (pX(β∗buy, X) + pβ(β∗buy, X)
∂β∗buy

∂X
)((1− β∗buy)η + z(1− α∗)(1− η))

− p(β∗buy, X)

(
η

∂β∗buy

∂X
+ z(1− η)

∂α∗

∂X

)

and this is equivalent to:

((1 + σ− p(β∗buy, X))η + pβ(β∗buy, X)((1− β∗buy)η + z(1− α∗)(1− η)))
∂β∗buy

∂X

+ pX(β∗buy, X)((1− β∗buy)η + z(1− α∗)(1− η))

= (p(β∗buy, X)− 1)z(1− η)
∂α∗

∂X

Similarly, observe that:

− (1− σ)η
∂β∗sell
∂X

− z(1− η)
∂α∗

∂X

= (pX(−β∗sell, X)− pβ(−β∗sell, X)
∂β∗sell
∂X

)((1− β∗sell)η + z(1− α∗)(1− η))

− p(−β∗sell, X)

(
η

∂β∗sell
∂X

+ z(1− η)
∂α∗

∂X

)
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and this is equivalent to:

((p(−β∗sell, X)− (1− σ))η + pβ(−β∗sell, X)((1− β∗sell)η + z(1− α∗)(1− η)))
∂β∗sell
∂X

− pX(−β∗sell, X)((1− β∗sell)η + z(1− α∗)(1− η))

= (1− p(−β∗sell, X))z(1− η)
∂α∗

∂X

Combining these results, we obtain ∂α∗
∂X < 0 since pX is negative (positive) when its

first argument is positive (negative). Furthermore, at lease one of ∂β∗i
∂C2

is positive.

We may further rewrite the above equations as:

A
∂β∗buy

∂X
= z(1− η)

∂α∗

∂X
−

(1− β∗buy)η + z(1− α∗)(1− η)

p(β∗buy, X)− 1
pX(β∗buy, X)

B
∂β∗sell
∂X

= z(1− η)
∂α∗

∂X
+

(1− β∗sell)η + z(1− α∗)(1− η)

1− p(−β∗sell, X)
pX(−β∗sell, X)

for some positive A, B. Lemma 1 Condition (vi) implies:

pX(β∗buy, X)

p(β∗buy, X)− 1
<
−pX(−β∗sell, X)

1− p(β∗sell, X)
< 0

Hence, we obtain:

A
∂β∗buy

∂X
> B

∂β∗sell
∂X

Since at lease one of ∂β∗i
∂C2

is positive,
∂β∗buy

∂X is positive. If ∂β∗sell
∂X ≥ 0, we are done. Suppose

∂β∗sell
∂X < 0. Then,

0 =

∂β∗buy
∂X η + ∂α∗

∂X z(1− η)

((1− β∗buy)η + z(1− α∗)(1− η))2 +

∂β∗sell
∂X η + ∂α∗

∂X z(1− η)

((1− β∗sell)η + z(1− α∗)(1− η))2

<

∂β∗buy
∂X η + ∂α∗

∂X z(1− η)

((1− β∗sell)η + z(1− α∗)(1− η))2 +

∂β∗sell
∂X η + ∂α∗

∂X z(1− η)

((1− β∗sell)η + z(1− α∗)(1− η))2
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holds. Hence,
∂β∗buy

∂X +
∂β∗sell

∂X > 0 since ∂α∗
∂X < 0.

C.3 Proof of Proposition 3

Since p(β∗buy) < (1 + σ) and p(β∗sell) > (1 − σ), we get P(β∗buy) < (1 + σ) and

P(β∗sell) > (1− σ). Therefore, πD
IT < 0 holds. Next, observe that:

∂πD
IT

∂βbuy
=

w
2
(

p(βbuy, X)− (1 + σ)
)
< 0

because we are focusing on (X,α, βbuy, βsell) that satisfy the equilibrium conditions, in

particular, p(βbuy, X)− (1 + σ) < 0. Similarly, we can show that πD
IT is decreasing in

βsell.

C.4 Proof of Proposition 4

Since Q is symmetric, we may rewrite the profit function as:

πD
LT = w

∫ z̄

0
(P(α∆z)− P(−α∆z))α∆zdQ(∆z).

This is positive because p is increasing in δ. Let us consider the comparative statics

with respect to α. Observe that

(P(α∆z)− P(−α∆z))α∆z =
∫ α∆z

0
{p(δ)− p(−δ)} dδ

Since p is increasing in δ, this object is increasing in α. Hence, πD
LT is increasing in α.

Furthermore, since p is decreasing in X if and only if δ > 0, this object is decreasing in

X. Combined with the fact that w is decreasing in X, πD
LT is decreasing in X.
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C.5 Proof of Proposition 5

First, we provide the formal statement of point (iii) in Proposition 5 that deals with

endogenous variables in a global range.

Proposition 9 (Generalized point (iii) of Proposition 5). Let β̄i(X) ∈ R++ be the so-

lutions to p(β̄buy, X) = 1 + σ and p(−β̄sell, X) = 1 − σ. X∗(α, βbuy, βsell) is decreas-

ing in βbuy at (α, βbuy, βsell) = (A, Bbuy, Bsell) if βbuy ∈ [0, β̄buy(X∗(A, Bbuy, Bsell))).

X∗(α, βbuy, βsell) is decreasing in βsell at (α, βbuy, βsell) = (A, Bbuy, Bsell) if

βsell ∈ [0, β̄sell(X∗(A, Bbuy, Bsell))). Since equilibrium conditions require p(βbuy) < 1 + σ

and p(−βsell) > 1− σ, our interest lies in βi that takes values within the range that guaran-

tees point (iii) of Proposition 5.

First, since
(

P(βbuy)− (1 + σ)
)

βbuy + ((1− σ)− P(−βsell)) βsell , E[P(α∆z)α∆z]

and w are decreasing in X, πD
M is also decreasing in X for πD

M ≥ 0 given βi and α.

Next, for πD
M = 0 to hold, we need:

η

2
[(

P(βbuy, X)− (1 + σ)
)

βbuy + ((1− σ)− P(−βsell, X)) βsell
]
+(1− η)E[P(α∆z)α∆z] = 0.

Note that we take βi and α as fixed and not functions of X. Since the LHS is decreasing

in X and negative for sufficiently large X, there is a unique and stable solution X∗ if

the LHS is positive at X = xpassive. When the LHS is not positive at X = xpassive, it is

negative for all X > xpassive.

As we have shown in Proposition 4, πD
LT is increasing in α. Hence, X∗ is increasing

in α. Now, observe that
2
w

∂πD
IT

∂βbuy
= p(βbuy)− (1 + σ).

Since we have βbuy ∈ [0, β̄buy(X∗(A, Bbuy, Bsell))), we get p(Bbuy, X) < (1 + σ) for all

X ≥ X∗(A, Bbuy, Bsell). Therefore, ∂πD
IT

∂β∗buy
< 0 holds for all X ≥ X∗(A, Bbuy, Bsell). Hence,
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X∗ is decreasing in βbuy at (α, βbuy, βsell) = (A, Bbuy, Bsell) if βbuy ∈ [0, β̄buy(X∗(A, Bbuy, Bsell)))..

We can also show that X∗ is decreasing in βsell following a similar discussion.

C.6 Proof of Proposition 6

Let S : R→R3 be

S(X) = (α∗(X), β∗buy(X), β∗sell(X))

and let G : R3 → R be the function specified in equation (26). We will show that

G ◦ S has a unique fixed point. By Propositions 1 and 5, we know that functions S

and G are well-defined. Moreover, these functions are continuous and thus G ◦ S is

continuous. Since limX→∞ S(X) = (0, 1, 1) holds, limX→∞ G ◦ S(X) = max{xpassive, X̃}

holds where X̃ satisfies p(1, X̃) − p(−1, X̃) = 2σ. Also, note that G ◦ S(xpassive) ≥

xpassive holds. Hence, G ◦ S has a fixed point in [xpassive, ∞).

Next, we claim that π̃D
M(X; S(X)) = 1

w πD
M(X; S(X)) is strictly decreasing in X. Note

that πD
M(X∗; S(X∗)) = 0 must hold if X∗ is an interior solution for the DEX liquidity

in equilibrium. Observe that:

dπ̃D
M(X; S(X))

dX

=
η

2

[(
p(β∗buy(X), X)− (1 + σ)

) ∂β∗buy(X)

∂X
+ ((1− σ)− p(−β∗sell(X), X))

∂β∗sell(X)

∂X

]
+ PX(β∗buy(X), X)β∗buy(X)− PX(−β∗sell(X), X)β∗sell(X)

+ (1− η)
∂E[P(α∗(X)∆z; X)α∗(X)∆z]

∂X

Since α∗(X) is decreasing in X, the last term is negative by Proposition 4. Moreover,

since PX(β∗buy(X), X) < 0 and PX(−β∗sell(X), X) > 0 hold, the second line is negative.

Finally, we show that the first line is also negative. Equilibrium conditions lead to
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p(β∗buy(X), X)− (1 + σ) = −σ
(1− η)(1− α∗)z

(1− β∗buy(X))η + (1− η)(1− α∗)z
,

(1− σ)− p(−β∗sell(X), X) = −σ
(1− η)(1− α∗)z

(1− β∗sell(X))η + (1− η)(1− α∗)z
.

If ∂β∗sell(X)
∂X ≥ 0, these terms are negative, and the proof ends. Suppose that ∂β∗sell(X)

∂X < 0.

We have shown that:

∂β∗buy(X)

∂X
((1− β∗buy)η + z(1− α∗)(1− η))2 +

∂β∗sell(X)
∂X

((1− β∗sell)η + z(1− α∗)(1− η))2 > 0.

By combining these results,

(
p(β∗buy(X), X)− (1 + σ)

) ∂β∗buy(X)

∂X
+ ((1− σ)− p(−β∗sell(X), X))

∂β∗sell(X)

∂X

= −σ(1− η)(1− α∗)z

×


∂β∗buy(X)

∂X
(1− β∗buy)η + z(1− α∗)(1− η)

+

∂β∗sell(X)
∂X

(1− β∗sell)η + z(1− α∗)(1− η)


= −σ(1− η)(1− α∗)z

{
(1− β∗buy)η + z(1− α∗)(1− η)

}
× (

∂β∗buy(X)

∂X
((1− β∗buy)η + z(1− α∗)(1− η))2

+

∂β∗sell(X)
∂X

((1− β∗sell)η + z(1− α∗)(1− η))((1− β∗buy)η + z(1− α∗)(1− η))
)

< −σ(1− η)(1− α∗)z
{
(1− β∗buy)η + z(1− α∗)(1− η)

}
×


∂β∗buy(X)

∂X
((1− β∗buy)η + z(1− α∗)(1− η))2 +

∂β∗sell(X)
∂X

((1− β∗sell)η + z(1− α∗)(1− η))2


< 0
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This shows that π̃D
M(X; S(X)) is strictly decreasing in X. Hence, there is at most one

interior equilibrium.

When π̃D
M(xpassive; S(xpassive)) > 0, xpassive cannot be an equilibrium because pro-

viding additional liquidity is profitable, and the above argument shows that there is a

unique interior equilibrium. When π̃D
M(xpassive; S(xpassive)) ≤ 0, there is no X > xpassive

such that π̃D
M(X; S(X)) = 0. Thus, xpassive is the equilibrium DEX liquidity.

The stability of the equilibrium directly follows from Propositions 2 and 5.

C.7 Proof of Proposition 7

From equation (34), we get (Condition A):

0 =

∂β∗buy
∂σ η + ∂α∗

∂σ z(1− η)

((1− β∗buy)η + z(1− α∗)(1− η))2 +

∂β∗sell
∂σ η + ∂α∗

∂σ z(1− η)

((1− β∗sell)η + z(1− α∗)(1− η))2 .

From the indifference conditions, we may derive:

(1− β∗buy)η − (1 + σ)η
∂β∗buy

∂σ
− z(1− η)

∂α∗

∂σ

=

(
pβ(β∗buy, X∗)

∂β∗buy

∂σ
+ pX(β∗buy, X∗)

∂X∗

∂σ

)
((1− β∗buy)η + z(1− α∗)(1− η))

−p(β∗buy, X∗)

(
η

∂β∗buy

∂σ
+ z(1− η)

∂α∗

∂σ

)

Similarly,

−(1− β∗sell)η − (1− σ)η
∂β∗sell

∂σ
− z(1− η)

∂α∗

∂σ

=

(
−pβ(−β∗sell, X∗)

∂β∗sell
∂σ

+ pX(−β∗sell, X∗)
∂X∗

∂σ

)
((1− β∗sell)η + z(1− α∗)(1− η))

−p(−β∗sell, X∗)
(

η
∂β∗sell

∂σ
+ z(1− η)

∂α∗

∂σ

)
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These conditions imply (Condition B):

A
∂β∗buy

∂σ
= −

pX(β∗buy, X∗) ∂X∗
∂σ

p(β∗buy, X∗)− 1
((1− β∗buy)η + z(1− α∗)(1− η))+

(1− β∗buy)η

p(β∗buy, X∗)− 1
+ z(1− η)

∂α∗

∂σ

B
∂β∗sell

∂σ
=

pX(−β∗sell, X∗) ∂X∗
∂σ

1− p(β∗sell, X∗)
((1− β∗sell)η + z(1− α∗)(1− η))+

(1− β∗sell)η

1− p(β∗sell, X∗)
+ z(1− η)

∂α∗

∂σ

Now, let us consider the break-even condition for the liquidity providers. Let

π̃D
M(X; S(X)) = 1

w πD
M(X; S(X)). Observe that:

dπ̃D
M(X∗)
dσ

=
η

2

[(
p(β∗buy(X), X)− (1 + σ)

) ∂β∗buy

∂σ
+ ((1− σ)− p(−β∗sell(X), X))

∂β∗sell(X)

∂σ

]
− η

2
(β∗buy + β∗sell)

+
η

2

{
PX(β∗buy, X∗)β∗buy

∂X∗

∂σ
− PX(−β∗sell, X)β∗sell

∂X∗

∂σ

}
+ (1− η)

∂E[P(α∗∆z; X)α∗∆z]
∂σ

Rearranging the terms,

dπ̃D
M(X∗)
dσ

= −C1
∂β∗buy

∂σ
− C2

∂β∗sell
∂σ
− C3

∂X∗

∂σ
+ C4

∂α∗

∂σ
− C5 = 0

must hold for Ci > 0 (Condition C). Suppose ∂X∗
∂σ ≥ 0. First, assume that ∂α

∂σ ≥ 0. Then,

by Condition B, both
∂β∗buy

∂σ and ∂β∗sell
∂σ must be positive. However, this is a contradiction

to Condition A. Next, assume that ∂α∗
∂σ < 0. Then, Condition C implies that:

(
p(β∗buy(X), X)− (1 + σ)

) ∂β∗buy

∂σ
+ ((1− σ)− p(−β∗sell(X), X))

∂β∗sell(X)

∂σ
> 0.

Since p(β∗buy(X), X)− (1+ σ) < 0 and (1− σ)− p(−β∗sell(X), X) < 0 hold, at least one

of ∂β∗i (X)
∂σ must be negative. Condition B implies that A

∂β∗buy
∂σ ≥ B ∂β∗sell

∂σ when ∂X∗
∂σ ≥ 0.
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Hence, ∂β∗sell
∂σ < 0 must hold. Then, by Condition A,

∂β∗buy
∂σ > 0 holds. Now, following a

similar argument as in the proof of Proposition 6,

(
p(β∗buy, X)− (1 + σ)

) ∂β∗buy

∂σ
+ ((1− σ)− p(−β∗sell(X), X))

∂β∗sell
∂σ

= −σ(1− η)(1− α∗)z

×


∂β∗buy

∂σ

(1− β∗buy)η + z(1− α∗)(1− η)
+

∂β∗sell
∂σ

(1− β∗sell)η + z(1− α∗)(1− η)


= −σ(1− η)(1− α∗)z

{
(1− β∗buy)η + z(1− α∗)(1− η)

}
× (

∂β∗buy
∂σ

((1− β∗buy)η + z(1− α∗)(1− η))2

+

∂β∗sell
∂σ

((1− β∗sell)η + z(1− α∗)(1− η))((1− β∗buy)η + z(1− α∗)(1− η))
)

< −σ(1− η)(1− α∗)z
{
(1− β∗buy)η + z(1− α∗)(1− η)

}
×


∂β∗buy

∂σ

((1− β∗buy)η + z(1− α∗)(1− η))2 +

∂β∗sell
∂σ

((1− β∗sell)η + z(1− α∗)(1− η))2


< 0

This is a contradiction. Therefore, it must be that ∂X∗
∂σ < 0.

C.8 Proof of Proposition 8

Informed buyers and sellers on the DEX expect to obtain (in aggregate)

WD
IT,i =


η
2 βbuy(1 + σ− P(βbuy, X)) for i = buy,

η
2 βsell(P(−βsell, X)− 1 + σ) for i = sell.

Similarly, the ex-post aggregate utility for the liquidity traders on the DEX is
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WD
LT,i =

zbuy(1− η)α(1− P(α∆z, X)− α
2 σ) for i = buy,

zsell(1− η)α(P(α∆z, X)− 1− α
2 σ) for i = sell,

as they buy and sell zbuy and zsell units in aggregate. Each market maker’s expected

trading profit from supplying w share of liquidity on the DEX is

VLP(w; X) = w×


−E [(1− P(α∆z, X))α∆z] w.p. 1− η

σX− βbuy(1 + σ− P(βbuy, X)) w.p. η
2

−σX + βsell(P(−βsell, X)− 1 + σ) w.p. η
2

Obviously, the first line shows the liquidity trading with the private-value shock, and

the second and the third ones are trading due to the common-value shock. Since the

market makers supply X so that E[VLP] = 0, and a trade on the CEX is a zero-sum

game, we obtain the result.

D Sequential Execution

In this appendix, we show that executing an order all at once (AAO) is the same as the

sequential order execution.

Equivalence of post-trade liquidity pools. Suppose that there are n informed traders, and

each of them has measure w = 1
n and places δ units of market buy order to the DEX

(in the model, we assume δ = 1). Note that the aggregate trading is of size δ. The

initial state of the liquidity pool is denoted as (C0, X0) with k ≡ C0X0. Note that the

following discussion can be easily extended to the case with liquidity traders.
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The first transaction is executed at price

p1 =
C0

X0 − δw

and the liquidity pool becomes

C1 = C0 + p1δw = C0
X0

X0 − δw
,

X1 = X0 − δw.

By iterating, we obtain the following transition equations for the liquidity pools: for

general i = 1, 2, · · · , n,

Ci = Ci−1
Xi−1

Xi−1 − δw
,

Xi = Xi−1 − δw.

The above equations imply that, after all (n) transactions are completed, the liquidity

pools have

Xn = X0 − nδw = X0 − δ,

Cn = C0
X0

X0 − nδw
= C0

X0

X0 − δ
.

Thus, the post-trade state of the pools with sequential execution is the same as that of

AAO execution. The above result also implies that the profits for the market makers

on the DEX stay the same even if we consider sequential execution of orders.

Equivalence of the execution price. Next, consider the expected trading cost (i.e., the

execution price) for an informed trader. We consider a continuum of traders with

measure β (by setting n → ∞ with δ = 1 and w = β/n in the above example) and
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assume that traders’ orders are independently executed following a Poisson process.

Suppose that y ∈ [0, β) orders have been executed before an informed trader gets to

execute her order. From the above discussion, her order faces the following liquidity

pools.

Cy = C0
X0

X0 − y
, Xy = X0 − y.

Since her order is infinitesimal, it is executed at price

p(y) =
Cy

Xy
=

C0X0

(X0 − y)2 .

Due to the independent Poisson process, y ∼ U[0, β]. Thus, the expected execution

price is given by

p =
1
β

∫ β

0
p(y)dy =

C0

X0 − β
,

which is identical to the execution price of each order in the case with AAO trade

execution.
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