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Abstract

We theoretically characterize the behavior of machine learning portfolios in the high
complexity regime, i.e. when the number of parameters exceeds the number of observa-
tions. We demonstrate a surprising “virtue of complexity”: Sharpe ratios of machine
learning portfolios generally increase with model parameterization, even with minimal
regularization. Empirically, we document the virtue of complexity in US equity market
timing strategies. High complexity models deliver economically large and statistically
significant out-of-sample portfolio gains relative to simpler models, due in large part
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Keywords: Portfolio choice, machine learning, random matrix theory, benign overfit, overpa-

rameterization
JEL: C3, C58, C61, G11, G12, G14

*Bryan Kelly is at Yale School of Management, AQR Capital Management, and NBER; www.
bryankellyacademic.org. Semyon Malamud is at Swiss Finance Institute, EPFL, and CEPR, and is a
consultant to AQR. Kangying Zhou is at Yale School of Management. We are grateful for helpful comments
from CIliff Asness, Kobi Boudoukh, James Choi, Paul Goldsmith-Pinkham, Amit Goyal, and seminar and
conference participants at AQR and Yale. AQR Capital Management is a global investment management
firm, which may or may not apply similar investment techniques or methods of analysis as described herein.
The views expressed here are those of the authors and not necessarily those of AQR. Semyon Malamud
gratefully acknowledges support from the Swiss Finance Institute.


www.bryankellyacademic.org
www.bryankellyacademic.org

1 Introduction

The finance literature has recently seen rapid advances in return prediction methods borrow-
ing from the machine learning canon. The primary economic use case of these predictions
has been portfolio construction. While a number of papers have documented significant
empirical gains in portfolio performance through the use of machine learning, there is little
theoretical understanding of the behavior of portfolios formed from heavily parameterized
models.

We provide a theoretical analysis of such “machine learning portfolios.” To provide
transparent and intuitive characterizations, our theoretical environment has two simplifying
aspects. First, we study linear least squares prediction models. This is without loss of
generality as a number of recent papers have established an equivalence between sophisticated
models such as deep neural networks and high-dimension linear models (Jacot et al., 2018;
Hastie et al., 2019; Allen-Zhu et al., 2019). Second, we focus on a single risky asset so
that the portfolio problem boils down to optimal market timing. While our analysis can
be applied to a panel of many assets, the role of covariances in optimal machine learning
portfolios introduces an unnecessary layer of complexity to our analysis. In other words, the
two simplifying aspects of our setting make our key findings more accessible, and neither are
critical to our conclusions.

As a backdrop to our analysis, we begin with a well understood deficiency of ordinary
least squares (OLS) prediction. As the number of regressors, P, approaches the number
of data points, T', the expected out-of-sample R? tends to negative infinity. An immediate
implication is that a portfolio strategy attempting to use OLS return forecasts in such a
setting will have divergent variance, and in turn its expected out-of-sample Sharpe ratio
collapses to zero. The intuition behind this is simple: When number of regressors is similar
to the number of data points, the regressor covariance matrix is unstable and its inversion

induces wild variation in coefficient estimates and forecasts. A common interpretation of



this is insidious overfit: With P = T'| the regression exactly fits the training data and the
model does not generalize out-of-sample.

In this paper, we study behavior of portfolios in the high model complexity regime where
the number of predictors ezceeds the number of observations (P > T).! In this case, standard
regression logic no longer holds because the regressor inverse covariance matrix is not defined.
However, the pseudo-inverse is defined, and it corresponds to a limiting ridge regression with
infinitesimal shrinkage, or the “ridgeless” limit. An emergent statistics and machine learning
literature shows that, in the high complexity regime, ridgeless regression can achieve accurate
out-of-sample forecasts despite fitting the training data perfectly. This seemingly counter-
intuitive phenomenon is sometimes called “benign overfit” (Bartlett et al., 2020; Tsigler and
Bartlett, 2020).

We analyze related phenomena in the context of machine learning portfolios. We establish
the striking theoretical result that market timing strategies based on ridgeless least squares
predictions generate positive Sharpe ratio improvements for arbitrarily high levels of model
complexity. Stated more plainly, when the true data generating process (DGP) is highly
complex—i.e., it has many more parameters than there are training data observations—one
might think that a timing strategy based on ridgeless regression is bound to fail. After all, it
exactly fits the training data with zero error. Surprisingly, this intuition is wrong. We show
that strategies based on extremely high-dimensional models can thrive out-of-sample, even
with minimal ridge regularization.

Our theoretical analysis delivers a number of additional conclusions. First, it shows that
the out-of-sample R? from a prediction model is a poor measure of its economic value. A

market timer can generate potentially large economic profits even when the R? is large and

IThe statistics and machine learning community often refer to P > T as the “over-parameterized” regime.
We avoid this terminology as it suggests that too many parameters are being used, and this is not necessarily
the case. For example, the true data generating process may be highly complex (i.e., P is large relative to
T), and thus a correctly specified model would require P > T. We would normally think of that when an
empirical model has the same specification as the true model, it is correctly parameterized as opposed to
over-parameterized.



negative. The reason is that the R? is heavily influenced by the variance of forecasts.? A
very low out-of-sample R? indicates a highly volatile timing strategy. But the properties of
least squares imply that the expected out-of-sample return of a timing strategy is always
positive. So, as long as the timing variance is not too high (the R? not too negative), the
timing Sharpe ratio can be economically large.

Second, we study two theoretical cases, one for correctly specified models and one for
mis-specified models. Again surprisingly, even mis-specified models achieve positive expected
out-of-sample Sharpe ratio gains from market timing (though, naturally, correctly specified
models do even better). In the correctly specified case, we learn how timing portfolios
behave when the true DGP varies from simple to complex, holding the data size fixed.
This is valuable for developing a general understanding of machine learning portfolios for
a variety of DGPs. However, assuming correct model specification is unrealistic in a few
key respects. To begin with, it is unlikely that we ever have a predictor data set that nests
all relevant conditioning information, and it is also unlikely that we use information in the
proper functional form. Furthermore, the comparative statics in our analysis of correctly
specified models (which simultaneously vary the complexity of the true DGP and the model)
are not relevant for any specific empirical application because the DGP for that data set is
of course fixed. In practice, when we vary the empirical model specification from simple to
complex, we change how accurately the model approximates a fixed DGP.

We structure our theoretical analysis of mis-specified models with these real-world consid-
erations in mind. We show that the performance of mis-specified machine learning portfolios
tend to continually tmprove as model complexity increases. This is true even when we

push the empirical model to extremely large parameterizations (holding the number of

2That is, R? is not just about predictive correlation. Consider a simple model with a single predictor
and a coefficient estimate many times larger than the true value. This scale error will tend to drive the R?
negative, but it won’t affect the correlation between the model fits and the true conditional expectation.
The R? is negative only because the variance of the fits is off.



observations constant). The intuition is that when the true DGP is unknown, the gains from
improved approximations of the DGP dominate statistical costs of heavy parameterization.

Third, while the results discussed so far refer primarily to the case of ridgeless regression,
we show that machine learning portfolios often benefit further by moving away from the
ridgeless limit and introducing non-trivial shrinkage. The bias induced by heavier ridge
shrinkage lowers the expected returns to market timing, but the associated variance reduction
reins in the volatility of the strategy. The Sharpe ratio tends to benefit from higher shrinkage
because the variance reduction overwhelms the deterioration in expected timing returns. This
is especially true when P = T', where the behavior of ridgeless regression is at its worst.

From a technical standpoint, we characterize the behavior of portfolios in the high
complexity regime using asymptotic analysis as the size of the model grows with the number
of observations at a fixed rate (T — oo and P/T — ¢ > 0). Such analysis requires
the apparatus of random matrix theory, on which we draw heavily to derive our results.
Conceptually, this delivers an approximation for how a machine learning model behaves as
we gradually increase the number of parameters holding the amount of data fixed.

We conduct an extensive empirical analysis that demonstrates the virtues of model
complexity in a canonical asset pricing problem: predicting the aggregate US equity market
return. In particular, we study market timing strategies based on predictions from very
simple models with a single parameter to extremely complex models with over 1,000 pa-
rameters (applied to training samples with as few as 12 months). The data inputs to our
models are 15 standard predictor variables from the finance literature compiled by Welch and
Goyal (2008). To map our data analysis to the theory, we require a method that smoothly
transitions from low to high complexity models while holding underlying information set
fixed. The random feature method of Rahimi and Recht (2007) is ideal for this. We use it
to construct expanding neural network architectures that take the Welch and Goyal (2008)

predictors as inputs and maintain the core ridge regression structure of our theory.



We find extraordinary agreement between the empirical patterns and our theoretical
predictions. Over the standard CRSP sample 1926-2020, out-of-sample market timing
Sharpe ratio improvements (relative to market buy-and-hold) reach roughly 0.47 per annum
with t-statistics near 3.0. This is despite the fact that the out-of-sample predictive R?
is substantially negative for the vast majority of models, consistent with the theoretical
argument that predictive R? is inappropriate for judging the economic benefit of a machine
learning model.

Timing positions from high complexity models are remarkable. They look essentially
like long-only strategies, following the Campbell and Thompson (2008) recommendation to
impose a non-negativity constraint on expected market returns. But our models learn this
as opposed to being handed a constraint. Moreover, machine learning strategies learn to
divest leading up to NBER recessions, successfully doing so in 14 out of 15 recessions in our
test sample on a purely out-of-sample basis.

This paper relates most closely to an emergent literature that studies the theoretical
properties of machine learning models. A number of recent papers show that linear models
combined with random matrix theory help characterize the behavior of neural networks
trained by gradient descent.® In particular, wide neural networks (many nodes in each layer)
are effectively kernel regressions, and early stopping is closely related to ridge regularization
(Ali et al., 2019). Recent research also emphasizes the phenomenon of benign overfit and
“double descent,” in which expected forecast error drops in the high complexity regime.*

In this literature, the closest paper to ours is Hastie et al. (2019), who derive nearly
optimal error bounds in finite samples for bias and risk in ridge(less) regression under

very general conditions.’

They are also the first to introduce mis-specified models where
some of signals may be unobservable. In this paper, we focus on the (easier) asymptotic

regime. We use a different method of proof and relax some of the technical conditions on the

3See, for example, Jacot et al. (2018); Hastie et al. (2019); Du et al. (2018, 2019); Allen-Zhu et al. (2019).
4See, for example, Spigler et al. (2019); Belkin et al. (2018, 2019, 2020); Bartlett et al. (2020).
°See also Richards et al. (2021) who obtain less general results in an asymptotic setting (as in our paper).



distributions of signals, using recent results of Yaskov (2016). In particular, we allow for non-
uniformly positive definite covariance matrices. Most importantly, instead of focusing on the
prediction model forecast error variance, we characterize expected out-of-sample expected
returns, volatility, and Sharpe ratios of market timing strategies based on machine learning
predictions. As in Hastie et al. (2019), our key interest is in the mis-specified model. While
Hastie et al. (2019) focus on a specific form of mis-specification and its ridgeless limit, we
derive general expressions for asymptotic expected returns and volatility in terms of signal
correlations. Finally, in the finance literature, our paper is tangentially related to Martin
and Nagel (2021) who examine equilibrium market efficiency implications of machine learning
models.

The paper is organized as follows. In Section 2 we lay out the theoretical environment.
Section 3 presents the foundational results from random matrix theory from which we
derive our main theoretical results. Section 4 characterizes the behavior of machine learning
portfolios in the correctly specified setting and emphasizes the intuition behind the portfolio
benefits of high complexity prediction models. Section 5 extends these results to the more
practically relevant setting of mis-specified models. We present our main empirical results
in Section 6, and Section 7 concludes. The appendix contains a variety of supplementary
theory and empirical robustness analysis. We invite readers that are primarily interested in
the qualitative theoretical points and the empirical analysis to skip the technical material of

Sections 2 and 3.

2 Environment

This section describes our modeling assumptions and outlines the criteria by which we

evaluate machine learning portfolios.



2.1 Asset Dynamics

Assumption 1 There is a single asset whose excess return behaves according to
Ry = SiB + e (1)

with €41 i.4.d., Eleg] = Elep,] = 0,E[ef,,] = 0%, Elel,] < oo, and S; a P-vector
of predictor variables. Without loss of generality, everywhere in the sequel we normalize

o2 =1.

Assumption 1 establishes the basic return generating process. Most notably, conditional
expected returns depend on a potentially high-dimensional information set embodied by the
predictors, S.

The covariance structure of S plays a central role in the behavior of machine learning
predictions and portfolios. Assumption 2 imposes basic regularity conditions on this covari-

alnce.

Assumption 2 There ezist independent random vectors X; € REY with four finite first

moments, and a symmetric, P-dimensional positive semi-definite matriz V such that
St - ‘1/1/2Xt.

Furthermore, E[X;,| = E[X}] =0 and E[X?,] =1, i = 1,---, P. Furthermore, the fourth

moments E[X;ft] are uniformly bounded and X;,; satisfy the Lindenberg condition

P
1
lim — > B[X2 1, seyp) =0 for all e > 0.
i=1

P—oo

As we show below, the theoretical properties of machine learning portfolios depend heavily

on the distribution of eigenvalues of ¥. We are interested in limiting behavior in the high



model complexity regime, i.e. as P,T — oo, with P/T" — ¢ > 0. Assumption 3 ensures that

estimates of ¥ are well-behaved in this limit.

Assumption 3 We will use \,(V), k=1,--- | P, to denote the eigenvalues of an arbitrary

matriz W. In the limit as P — oo, the spectral distribution F'¥ of the eigenvalues of U

P
1
F¥(z) = 2 Z 1y, (w)<e (2)
k=1

converges to a non-random probability distribution H supported on (0,+00).5 Furthermore,

U is uniformly bounded as P — oo. We will use
Yop = lim P71 r(UF) | k> 1
P—oo

to denote asymptotic moments of the eigenvalues of V.

Our last assumption governs the behavior of the true predictive coefficient, 5.

Assumption 4 We assume 3 = Bp is random, 3 = (3;)2, € RY, independent of S and
R, and satisfies E[B] = 0, and E[B8'] = P~'b. pI for some constant b, p = E[||8]|*],” and
satisfies b, p — b, almost surely, for some b, > 0. Furthermore, E[3}] < cP~? for some

¢ >0, and B satisfy the same Lindenberg condition as X.

Randomness of § in Assumption 4 is a device that allows us to characterize the prediction
and portfolio problem for generic predictive coefficients. The assumption that § is mean zero
is inconsequential; we could allow for non-zero mean and restate our analysis in terms of vari-
ances rather than second moments. F[33'] = P~'b, pI imposes that the predictive content
of signals is rotationally symmetric. In other words, predictability is uniformly distributed

across signals. From a technical standpoint, it is possible to derive explicit expressions for

61f 0 is in the support of H, then U is strictly degenerate, meaning that some signals are redundant.
"This identity follows because b, = tr E[33'] = E[tr(85')] = E[b.].



portfolio performance without this assumption, but the expressions become more complex.
In this case, the asymptotic behavior depend on the distribution of projections of S on the
eigenvectors of ¥ (the signal principal components).® We leave this important generalization
for future research.

When ( is random and rotationally symmetric, we can focus on average portfolio behavior
across signals, which implies that only the traces of the relevant matrices matter, as opposed
to entire matrices (which are the source of technical intractability). The proportionality
of E[33] to P71, and likewise the finite limiting ¢, norm of 3, controls the “true” Sharpe
ratio. The assumption ensures that Sharpe ratios of timing strategies remain bounded as
the number of predictors grows. In other words, our setting is one with many predictors,
each contributing a little bit of predictability.

A key aspect of our paper, and one rooted in Assumptions 2 and 4, is that realized out-
of-sample returns are independent of the specific realization of 8. This is due to a law of

large numbers in the P — oo limit, and is guaranteed by the following lemma.”

Lemma 1 As P — oo we have

B'ApB — P b, tr(Ap) — 0

in probability for any bounded sequence of matrices Ap. In particular, 'US — by).1.

2.2 Timing Strategies and Performance Evaluation

We study timing strategy returns, defined as

us
Rt+1 = Wth_H

8See, Hastie et al. (2019). In particular, when 3 is concentrated on the top principal components, the
phenomenon of benign overfit emerges (Bartlett et al. (2020), Tsigler and Bartlett (2020)), and the optimal
ridge regularization is zero.

9Tt is possible to use the results in Hastie et al. (2019) to extend our analysis to generic 3 distributions.
We leave this important direction for future research.
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where 7; is a timing weight that scales the position in the asset up and down to exploit
time-varying in the asset’s expected returns.

We are interested in timing strategies that optimize the unconditional Sharpe ratio,

sp— PIEL] )
E[(RF,,)?]
While there are other possible performance criteria, we focus on this for its simplicity
and ubiquity. It is implied by the quadratic utility function at the foundation of mean-
variance portfolio theory. Academics and real-world investors rely nearly universally on the
unconditional Sharpe ratio when evaluating empirical trading strategies. The use of centered
versus uncentered second moment in the denominator is without loss of generality.'?

Our analysis centers on the following timing strategy functional form:

m(B8) = B'Se. (4)

This strategy takes positions equal to the asset’s conditional expected return. Note that
this timing strategy optimizes the conditional Sharpe ratio. That is, it achieves the same
Sharpe ratio as the conditional Markowitz solution, m°* MV = B[R, 1] /Var,[RZ, ] = 5'S,,

according to equation (1). While strategy m; is conditionally mean-variance efficient, it is

not the optimizer of the unconditional objective in (3), which takes the form sneond- MV —

B'Se/(1 + (8'S;)?).1! In the proof of Proposition 1 in the Appendix, we show that m; in
equation (4) and 7 neond- MV are equal up to third order terms.'? We study m, = 3'S; for the

simplicity of its linearity in both  and S;, but note that our conclusions are identical for

10 op — _ BIRE]
Define SR = Var[(;?ﬂ)} —
1See Hansen and Richard (1987); Ferson and Siegel (2001); Abhyankar et al. (2012).
12Tn particular, the Sharpe ratio in equation (3) is less than one due to the Cauchy-Schwarz inequality.

We show that the difference in Sharpe ratios for m; versus w?¢°"d MV jg on the order of the Sharpe ratio

cubed.

. Direct calculation yields SR = L

11



myneond MV hocause, in the limit as P — oo, the normalization factor 1 + (3'S;)? converges
to a constant.'?
Proposition 1 states the behavior of timing strategy 7, = 4'S; when T' — oo and P/T — 0

(i.e., when the predictive parameter § is known).

Proposition 1 (Infinite Sample) The unconditional first and second moments of returns

to the infeasible market timing strateqy 7 = B'S; are
ElmRi] = bbby >0 and  E [(mRi41)?] = (3(but01)® + bathir) -

The infeasible market timing Sharpe ratio is

1 1 1/2
SR — = < (5) . (5)

For comparison, under Assumptions 1 to 4, the unconditional first and second moments of

the un-timed asset return are (see Lemma 1)
E[Ri1] =0, and E[R} ] — 1+4bab:.

That is, our assumptions imply the un-timed asset has a zero Sharpe ratio. This is just a
normalization so that any positive market timing Sharpe ratio can be interpreted as pure

excess performance arising from timing ability.

2.3 Relating Predictive Accuracy to Portfolio Performance

We are ultimately interested in understanding the portfolio properties of a feasible timing
strategy, m = B’St. This is, of course, intimately tied to the prediction accuracy of

the estimator B, summarized by its expected mean square forecast error (MSFE) on an

13By a version of Lemma 1, 1 + (8'S¢)%2 — 1 + byt 1.
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independent test sample. This is the fundamental notion of estimator “risk” from statistical
theory, though we use the term “MSE” here to avoid confusion with portfolio riskiness. We

can write M SE as

MSE(B) =F |:<Rt+1 - S;,B)Q ‘B} = E[R§+1] —2 E[ﬁ'th+1|B] + E[ﬁﬂﬁ] . (6)
Timing Timing

Expected Return Leverage

In other words, the higher the strategy’s expected return, the lower the M SE. And the larger
the positions—or “leverage”—of the strategy, the larger the M SE. A timing strategy with a
higher expected return corresponds to more predictive power, while higher leverage gives the
strategy higher variance. Interestingly, these two objects, expected return and leverage of the
timing strategy, appear repeatedly throughout our analysis. The expected return/leverage
tradeoff in (6) is a financial decomposition of M S E analogous to its statistical decomposition
into a bias/variance tradeoff.

Note that a strategy m, = ['S; based on the infeasible true [ satisfies E[m R 1] =
E[p"U] = E[n7].** In this case, the M SE collapses to E[R? ;] — E[mR;11] and is minimized,
meaning that the leverage taken is exactly justified by the predictive benefits of the strategy.

This can also be stated in terms of the infeasible R? based on equation (1) and Lemma 1:

B/\IJ/B b*¢* 1
R = — .
BUB+1 by +1

Thus, there is a monotonic mapping from the infeasible timing strategy expected return to

the true R?, and from the infeasible Sharpe ratio to the true R? (see equation (5)).

“Indeed, E[(8'S;)?] = E[8'S;:Si8] = B'UB.
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3 Machine Learning and Random Matrices

The central premise of machine learning is that large data sets can be used in flexible model
specifications to improve prediction. This can be understood in the environment above by
considering the regime in which the number of predictors, P, is large, perhaps even larger
than T'. Our main objective is thus to understand the behavior of optimal timing portfolios
as the prediction model becomes increasing complex; i.e., when P — oo. Because this
involves estimating infinite-dimensional parameters, traditional large T" asymptotics do not
apply and we instead resort to random matrix theory. In this section, we discuss the ridge
estimator and present random matrix theory results at the foundation of our theoretical

characterization of high complexity timing strategies.

3.1 Least Squares Estimation

Throughout, we analyze (regularized) least squares estimators taking the form

-1
. ) N\ 1
ﬁ(Z) = (ZI + T 1 zt: StSt) T zt: Sth+1

for a given ridge shrinkage parameter, z. The ridge-regularized form is necessary for char-
acterizing /3 (z) in the high complexity regime, P/T — ¢ > 1, though we will see it also has
important implications for the behavior of 4(z) when P/T < 1.

Consider first the ordinary least squares (OLS) estimator, 3(0). As P approaches T' from
below, the denominator of the least squares estimator approaches singularity. This produces
explosive variance of B (0) and, in turn, explosive forecast error variance. As P — T, the
model begins to fit the data with zero error, so a common interpretation of the explosive
variance of 5(0) is insidious overfit that does not generalize out-of-sample.

When P moves beyond 7', there are more parameters than observations and the least

squares problem has multiple solutions. A particularly interesting solution invokes the

14



Moore-Penrose pseudo-inverse, (713", S,5/)" 15, SiRe1.'® This solution is equivalent

to the ridge estimator as the shrinkage parameter approaches zero:

-1
R 1

+\ . —1 !
B(0 )—Zlir(l)lJr (ZI—I—T Et St5t> T Et SiRyy1.

The solution S(0) is often referred to as the “ridgeless” regression estimator. When P < T,
OLS is the ridgeless estimator. At P = T there is still a unique least squares solution, yet the
model can exactly fit the training data (for this reason, P = T is called the “interpolation
boundary”). When P > T, the ridgeless estimator is one of many solutions that exactly
fit the training data, but among these it is the only solution that achieves the minimum
(, norm ((z) (Hastie et al., 2019). The machine learning literature has recently devoted
substantial attention to understanding ridgeless regression in the high complexity regime.
The counter-intuitive insight from this literature is that, beyond the interpolation boundary;,
allowing the model to become more complex in fact reqularizes the behavior of least squares
regression despite using infinitesimal shrinkage. We explore the implications of this idea for

market timing in the subsequent sections.

3.2 The Role of Random Matrix Theory

We analyze the behavior of B(z) and associated market timing strategies in the limit as
P — oo. This is possible due to a remarkable connection between ridge regression and
random matrix theory.

In regression analysis, the sample covariance matrix of signals, U= 71 > SuSy, natu-
rally plays a central role. But no general characterization exists for the behavior of ¥ in the
limit as P, T — oo. However, the tools of random matrix theory characterize one aspect of

U—the distribution of its eigenvalues. Fortunately, as we show, the prediction and portfolio

15Recall that the Moore-Penrose pseudo-inverse A+ of a matrix A is defined via AT = (A/A)71A" if A’A
is invertible, and AT = A’(AA")~1if AA’ is invertible.
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performance properties of least squares estimators rely only on the eigenvalue distribution of
\if, thus random matrix theory facilitates a rich understanding of machine learning portfolios.
Here we elaborate on the core results from random matrix theory that we build from.
First, to understand the central role of U’s eigenvalue distribution in determining the
limiting behavior of the least squares estimator, suppose momentarily that we could replace
U with its true unobservable signal covariance, ¥. For any symmetric matrix ¥, a convenient

matrix identity states

1 1L »
th((‘l’—ﬂ) )—;;()\i(‘l’)—z) ;

where \; (V) are the eigenvalues of . Using formula (2), we can rewrite this identity as

1

r—z

dFY(z) , 2 <0.

1 o
ﬁtr((‘lf—z]) )—/

From this identity, we immediately see the fundamental connection between ridge regular-
ization and the distribution of eigenvalues for W. The right-side quantity is the Stieltjes
transform of the eigenvalue distribution of ¥, denoted F'¥Y. By Assumption 3, this distribu-
tion is well behaved when P — oo and converges to a non-random distribution H. Thus, we

have

my(z) = / ! dH(z) = lim %tr (U —zD)7"). (7)

xrx— z P—oo

The function my(z) is the limiting Stieltjes transform of the eigenvalue distribution of W.
Equation (7) is a powerful step towards understanding the least squares estimator in the
machine learning regime (and hence machine learning predictions and portfolios). It states
that key properties of the limiting inverse of the ridge-regularized signal covariance matrix

can be completely characterized if we just know U’s eigenvalue distribution.

16



The problem, of course, is that the true ¥ is unobservable. We only observe its sam-
ple counterpart, \i’, thus we only have empirical access to the Stieltjes transform of U’s
eigenvalues. The empirical counterpart to the unobservable my(z) is

m(z;c) = lim 1 tr ((\il —zI)7h).
P—oo
In traditional finite P statistics, we would have convergence between the sample covariance 0
and the true covariance ¥ as T" — oo. One might be tempted to think that limp_, ]% tr ((\if—
zI)7') and limp_, 5 tr (¥ — zI)~!) also converge as T — oo. But this is not the case.
The limiting eigenvalue distributions of ¥ and ¥ remain divergent in the limit as T' — oo if
P/T — ¢ > 0. Here we see a first glimpse of the complexity of machine learning and how we
can understand it with random matrix theory. In the Appendix (see Theorem 7), we show
how m(—z;¢) can be computed from my(—2) using results of Silverstein and Bai (1995) and
Bai and Zhou (2008). In particular, m(—z;¢) > m(—z;0) = mg(—2) for all ¢ > 0.'® The
next result shows that, quite remarkably, if we constrain ourselves to linear ridge regression

estimators, all asymptotic expressions depend only on m(z;¢) and do not require my.'"

Proposition 2 We have

lim %tr((z[—l—@)lllf) S (o) )

T—o00

6Theorem 7 in the Appendix is a generalized version of the Maréenko and Pastur (1967) theorem that
accommodates non-i.i.d. S;. When signals are i.i.d. with ¥ = I and my(z) = (1 — 2z)~!, Maréenko and
Pastur (1967) show that

—(=0)+2)+ V(A=) +2)* +dez

m(=zc) = 2cz

(8)
By direct calculation, (8) is indeed the unique positive solution to (24) when my(2) = (1 — z)~!. While the
eigenvalue distributions of the sample and true covariance matrices do not coincide, Theorem 7 describes the
precise non-linear way they relate to each other. In particular, when P > T the matrix U has P — T zero
eigenvalues and therefore, P! tr ((21 + \i!)_l) contains a singular part, P~Y(P —T)z7! = (1 — ¢ 1)z71.

17Tt is possible to develop non-linear shrinkage estimators analogous to those developed by Ledoit and Wolf
(2020) for covariance matrices. Such estimators would require knowledge of the true eigenvalue distribution
of ¥ which can be recovered from m(z; c) using equation (24).
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almost surely, where

1—2zm(—z;¢)
cl—1+4zm(—z;¢)

§(z;0) =

The quantity tr E[(z] + ¥)~"¥] appears in virtually every expression we analyze to describe
portfolio behavior. It depends on an interaction between the sample and true signal co-
variance matrix and arises in the computation of both the expected return and leverage of
the timing strategy (see equation (6)). One would imagine, then, that we need to know the
limiting eigenvalue distribution of both matrices (or their Stieltjes transforms, m and my) in
order to describe tr E[(zI + ¥)~!W]. Proposition 2 shows that this is not the case—we only
need to know the empirical version, m(—z;¢). This is a powerful result. It will allow us to
quantify the expected out-of-sample behavior of machine learning portfolios based only on
the eigenvalue distribution of the sample signal covariance ¥ (which is observable) without
requiring us to know the eigenvalues of W.!®

We refer to the constant ¢ as “model complexity,” which (as preceding results show)
plays a critical role in understanding model behavior. It describes the limiting ratio of
predictors to data points: P/T — c¢. When T grows at a faster rate than the number of
predictors (i.e., ¢ — 0) the limiting eigenvalue distributions of ¥ and U in fact converge:
m(—z;0) = my(—2). As ¢ becomes positive, these distributions fail to converge, and their
divergence is wider for larger c. It is therefore clear that behavior of the least squares
estimator in the machine learning regime will differ from the true coefficient, even when
T — oo, as long as ¢ > 0. As a result, machine learning portfolios will suffer relative
to the infeasible performance in Proposition 1 despite an abundance of data. However,
while machine learning portfolios underperform the infeasible strategy, they can continue

to generate substantial trading gains. This is true even in the ridgeless case. Additional

8Heuristically, E[¥] = ¥ and hence tr E[(z] + ¥)"10] ~ tr E[(z] + ¥)~*¥]. However, random matrix
corrections make the true relationship non-linear.
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ridge shrinkage can boost performance even further. In the following sections, we precisely

characterize these behaviors.

4 Prediction and Performance in the Machine Learning Regime

In this section we analyze correctly specified models. We present the theoretical characteriza-
tions of machine learning models in terms of prediction accuracy and portfolio performance.

We then illustrate their behavior in a calibrated theoretical setting.

4.1 Expected Out-of-sample R?

To understand a model’s prediction accuracy in the high complexity regime, we study its
limiting M SFE, defined as

MSE(z;¢) = lim E{(RtH—S;B(z))Zw(z)]. (10)

T,P—oco, P/T—c

Notably, while B (z) is random and depends on the sample realization, we show below that
the limit in (10) is non-random. The arguments z and c are central to understanding the
limiting predictive ability of least squares. Respectively, they describe the extent of ridge
shrinkage and the complexity of the DGP (and thus of the correctly specified model).

In finance and economics it is common to state predictive performance in terms of R?

rather than M SE. We denote the limiting out-of-sample R? as

MSE(z,c)
imy poyoo B[R, 4]

R*(z¢) =1—

Y

where E[R7, ] is the null M SE when § = 0.

In Section 2.3, we discussed the infeasible maximum R2, or

b*¢*,1

R2<O,O) - m
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This corresponds to a data-rich environment (¢ = 0, so observations vastly outnumber
parameters) and OLS regression (z = 0). R?(0,0) is the benchmark for evaluating the loss of
predictive accuracy due to high model complexity, even when data is abundant. Specifically,

the R? of the least squares estimator in the machine learning regime behaves as follows.

Proposition 3 In the limit as T, P — oo, P/T — ¢, we have

E(z¢) =lim E[fRi1|8(2)] = bov(z;0)

L(z:¢) = lim E[#2|8(2)] = b,o(z;¢) — e/ (z;¢) (11)
9, 2&(zc) = L(z;¢c)
R*(z;¢) = 1+ oo
where
v(z;e) = ho1 — ¢ 2E(z;5c) = lm P tr(U(zI +0)7'0) > 0
Vizie) = —cHE(z0) + 28 (z0)) = —lim P~ r(W(2] + 0)720) < 0
v(z;c) = v(z;ie) + 2V (2;¢) = lim P~ tr(02 (2] + ©)720) > 0.

As we show in the Appendiz, these limits exist in probability.
Furthermore, R*(z;c) is monotone increasing in z for z < z, = c/b,, and decreasing in

z for z > z,. R2(z; ¢) attains its mazimum at z, = c/b., where it is positive and given by

; b (24; €)
R2{zi¢) = B2(0,0) — 259 bev(s 0.
(250 = B0O.0) = = 5 = T+ b,
In the ridgeless limit, we have
(ct=17Y <1
R*(0,¢) = R*(0,0) — (1 + buthey)™" (12)
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with some p(c) > 0, u(l4+) = +o0. Lastly, we have

lim R*(0,¢) =0 > lim R*(0,¢) = —c<. (13)

c— 00

When the prediction model is complex (¢ > 0), the limiting eigenvalues of U and
U diverge, and this unambiguously reduces the predictive R? relative to the infeasible
best, R%*(0,0). Intuitively, because the frictionless R%*(0,0) is fixed, as ¢ increases the
investor must learn the same amount of predictability but spread across many sources,
and this dimensionality expansion hinders statistical inference. In fact, the degradation
in predictive accuracy due to complexity can be so severe that expected out-of-sample R?
becomes extremely negative, particularly in the ridgeless case. Shrinkage can mitigate this
and help preserve accuracy in the midst of complexity. Shrinkage controls variance but
introduces bias. Proposition 3 points out that the amount of shrinkage that optimizes the
bias-variance tradeoff is z, = ¢/b,. More complex settings benefit from heavier shrinkage,
while setting with higher signal-to-noise ratio (higher b,) benefit from lighter shrinkage (see,
e.g. Hastie et al., 2019). £ and £ are the limiting out-of-sample expected returns and leverage
of the timing strategy, and Proposition 3 shows that these are the main determinants of out-
of-sample R%.

Figure 1 illustrates the theoretical behavior of the least squares estimator derived in
Proposition 3. The plots set ¥ to the identity matrix and fix b, = 0.2 (recall o2 is normalized
to one). The upper left panel draws the expected out-of-sample R? as a function of model
complexity ¢ (shown on the z-axis) and ridge penalty z (different curves). In this calibration,
the infeasible maximum predictive R? (that using the true parameter values) is the dotted
red line and provides a point of reference.

The blue line shows the R? in the ridgeless limit. When ¢ < 1, the ridgeless limit
corresponds to exactly z = 0 (i.e., OLS). On this side of ¢ = 1, we see that predictive

accuracy deteriorates rapidly as model complexity increases. This captures the well known
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Figure 1: Expected Out-of-sample R? and Norm of Least Squares Coefficient

Note: Limiting out-of-sample R? and /3 norm as a function of ¢ and z from Proposition 3 assuming V¥ is the

identity matrix and b, = 0.2.

property that OLS suffers when the number of predictors is large relative to the number of
data points. As ¢ — 1, the denominator of the OLS estimator approaches singularity, and
the expected out-of-sample R? dives.

To the right of ¢ = 1, the number of predictors exceeds the sample size, and the “ridgeless”
case is defined as the limit as z — 0 (i.e., when the least squares denominator is calculated
via the pseudo-inverse of \if) Counter-intuitively, the R? begins to rise as model complexity
increases.

The reason is that, while there are many equivalent 3 solutions that exactly fit'® the
training data when ¢ > 1, ridgeless regression selects the solution with the smallest norm.
As complexity increases, there are more solutions for ridgeless regression to search over and
thus it can find smaller and smaller betas that still exactly fit the training data. This acts
as a form of shrinkage, biasing the beta estimate toward zero. Due to this bias, the forecast

variance drops, and this improves the R?. In other words, despite z — 0, the ridgeless

YThat is, 'Sy = Ryyq for all t € [1,--- , T].
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solution still regularizes the least squares estimator, and moreso the larger is c. This property
of ridgeless least squares is a newly documented phenomenon in the statistics literature and
is still an emerging topic of research.?’ This result challenges standard financial economics
doctrine that places heavy emphasis on model parsimony. It shows that even in very simple
data generating processes, one may be able to improve the accuracy of return forecasts by
pushing model dimensionality well beyond sample size.

The remaining curves in Figure 1 show how the out-of-sample R? is affected by non-
trivial ridge shrinkage. Allowing z > 0 improves R? except at very low levels of complexity.
This is again a manifestation of the bias-variance tradeoff. When z > 0, the norm of B
is controlled, and the associated variance reduction outweighs the effects of bias when the
model is complex.

Our results regarding R? and MSE are similar to those in Hastie et al. (2019) and
Richards et al. (2021), though we impose weaker technical conditions on X; and ¥ (see
Appendix C for a comparison of our theoretical approach versus prior literature). Our main
theoretical contribution is in the subsequent sections where we derive portfolio performance

properties.

4.2 Expected Out-of-sample Market Timing Performance

Next, we analyze the behavior of market timing based on the least squares estimate:

7i(z) = B(2)S,.

Formula (11) derives the expected return of this strategy. The following proposition char-
acterizes the expected out-of-sample risk-return tradeoff of market timing in the high com-

plexity regime.

208ee Spigler et al. (2019), Belkin et al. (2018), Belkin et al. (2019), Belkin et al. (2020), and Hastie et al.
(2019).
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Proposition 4 In the limit when P, T — oo, P/T — ¢, the limiting second moment of the

market timing strateqy is
V(z;¢) =lim E (ﬁt(z)Rt+1)2|B =2(E(z;¢))* + (14 batbsy) L(z;0),

in probability, with £ and L given in (11). As a result, the Sharpe ratio satisfies

€(z¢) 1
SR(z;c) = = ' "
(25¢) \/V(Z, c) \/2 + (14 by, y) L(z¢) (14)

(E(z50))?

Furthermore, we have:
i) E(z;¢) is monotone decreasing in z and, hence, 0 < E(z;¢) < £(0,¢) < £(0,0), and
it) SR(z; ¢) is monotone increasing in z for z < z, = ¢/b, and monotone decreasing in z

for z > z, = ¢/b,. Thus, the mazimal Sharpe ratio is given by

B 1

SR(z;¢) < SR(0;0), (15)
where £(0,0) and SR(0,0) are the infeasible market timing expected return and Sharpe ratio

from Proposition 1.

The left panel of Figure 2 plots the expected out-of-sample return and the right panel
plots the expected out-of-sample volatility based on Propositions 3 and 4 using the same
calibration as Figure 1. Again, the ridgeless case is in blue. The expected returns of least
squares timing strategies are always positive because they are quadratic in beta. When
¢ <1 (i.e., in the OLS case), the ridgeless timing strategy achieves the true expected return
despite the fact that the corresponding R? is significantly negative in much of this range.
The fact that the out-of-sample expected return is unimpaired reflects the unbiasedness of

OLS, while the declining R? reflects the increasing forecast variance as c rises toward one.
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Figure 2: Expected Out-of-sample Risk and Return of Market Timing

Note: Limiting out-of-sample expected return and volatility of the market timing strategy as a function of

c and z from Proposition 3 assuming V¥ is the identity matrix and b, = 0.2.

The return volatility of the timing strategy is likewise increasing in ¢ for ¢ € [0, 1] due to the
rising forecast variance, and maxes out at ¢ = 1.

When ¢ > 1, the ridgeless expected return begins to deteriorate. The reason for this is
more subtle and is related to the rising R? discussed above. When model complexity is high,
the multiplicity of least squares solutions allows ridgeless regression to find a low norm beta
that exactly fits the training data. So, even though z — 0, the ridgeless beta is biased, and
the expected return of the strategy falls. At the same time, the volatility of the strategy
falls.

The other expected return and volatility curves show that the bias induced by a non-
trivial ridge penalty eats into the timing strategy even for ¢ < 1. But the bright side of
this attenuation is a reduction in the strategy’s riskiness. For fairly high shrinkage levels
like z = 1, the volatility of the timing strategy drops even below that of the infeasible best
strategy while maintaining a meaningfully positive expected return.

The net effect of these expected return and volatility behaviors is summarized by the
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Figure 3: Expected Out-of-sample Sharpe Ratio of Market Timing

Note: Limiting out-of-sample Sharpe ratio of the market timing strategy as a function of ¢ and z from

Proposition 3 assuming W is the identity matrix and b, = 0.2.

market timing strategy’s expected out-of-sample Sharpe ratio, given in Proposition 4. The
calibrated Sharpe ratio is shown in Figure 3. Recall that the buy-and-hold Sharpe ratio
is normalized to zero. The key implication of Proposition 4 is that, despite the sometimes
massively negative predictive R?, the ridgeless Sharpe ratio is everywhere positive, even for
extreme levels of model complexity. At ¢ = 1 the Sharpe ratio drops near zero, not because
the strategy is unprofitable (it remains maximally profitable in an expected return sense),
but because its volatility explodes.

Another interesting aspect of Figure 3 is that the Sharpe ratio benefits from non-trivial
ridge shrinkage regardless of model complexity. Shrinkage is most valuable near ¢ = 1, where
it reins in volatility substantially more than it reduces expected return. At both low levels
of complexity (¢ ~ 0) and high levels complexity (¢ >> 1), the Sharpe ratio is relatively

insensitive to z.
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Proposition 4 also implies that, when the model is correctly specified, the shrinkage that
optimizes the expected out-of-sample R? also optimizes the Sharpe ratio. This is convenient
because it means that one can focus on tuning the prediction model and be confident that
the tuned z will optimize timing performance. But two caveats are in order. The first is
that this statement applies for the Sharpe ratio, so if investors judge their performance with
other criteria, then other levels of shrinkage may be optimal. For example, a risk-neutral
investor always prefers ridgeless regression despite its comparatively poor performance in
terms of R?. Second, this statement requires correct specification. If the empirical model is
mis-specified, the optimal amount of shrinkage can differ depending on whether the objective

is to maximize out-of-sample R? or Sharpe ratio.

4.3 A Note on R?

At this point we already see that timing strategies with negative R? can have high aver-

age out-of-sample returns, and thus positive out-of-sample Sharpe ratios.?!

More plainly,
positivity of out-of-sample R? is not a necessary condition for an economically valuable
timing strategy. In fact, the least squares timing strategies in our framework all have strictly
positive out-of-sample expected return and Sharpe ratio regardless of the extent of shrinkage
or model complexity (despite having enormously negative R? in many cases).

Much of the empirical literature in return prediction and market timing focuses its
evaluations on out-of-sample predictive R? (see, e.g. Welch and Goyal, 2008). Proposition
4 ensures that we can worry less about the positivity of out-of-sample R? from a prediction

model, and focus more on the out-of-sample performance of timing strategies based on those

predictions.

21To see this in a simple example, consider a model with one predictor and imagine estimating a predictive
coefficient that happens to be a large scalar multiple of the truth. In this case, the R? will be pushed negative,
but the predictions will be perfectly correlated with the true expected return, thus the expected return of
the timing strategy will be positive. Furthermore, because the Sharpe ratio is independent of scale effects,
this timing strategy will equal the true Sharpe ratio of the DGP.
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5 Machine Learning and Model Mis-specification

So far we have studied the behavior of machine learning portfolios as a function of the
complexity of the true DGP while assuming we have the correctly specified model. Under
correct specification, the complexity comparative statics in Figures 1 to 3 change both
the empirical and the true model as we vary c. So, these theoretical comparative statics
for cannot really be taken to the data. Nevertheless, theory grounded on correct model
specification is powerful for developing a conceptual understanding of machine learning
portfolios.

A more empirically relevant theoretical setting would consider a single true DGP. Then, it
would consider empirical models that are always a misspecified approximation to this DGP.
Finally, it would make comparisons by increasing the complexity of the empirical model to
achieve an increasingly accurate approximation of the true DGP. We develop this theory
NOW.

We consider a true DGP with P predictors. We consider an expanding set of empirical
models to approximate the DGP. Each model is indexed by P, = 1,--- , P and corresponds
to an economic agent observing only a subset of the signals, Sp) = (Si,t)f:ll- We use
St(Q) = (Si1)_p, 11 to denote the remaining unobserved signals. The signal covariance matrix
corresponding to this partition is

v Uir Wio

Wio Voo
Naturally, mis-specified estimator behavior depends on the correlation structure of observed
and unobserved signals. This correlation structure is captured by the off-diagonal blocks of

v,
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We make the following technical assumption which ensures that estimators in the machine

learning regime have well behaved limits.

Assumption 5 For any sequence P, — oo such that Pi/P = q > 0, the eigenvalue
distribution of the matriz WUy, converges to a non-random probability distribution H(x;q).

We will use
Verla) = Jim Prlee(Wr), k> 1

to denote asymptotic moments of the eigenvalues of W ;.

In a mis-specified model, the (regularized) least squares estimator is

~

B(z;q) = <z[ + \ifl,l>1 % Z St(l) R, € R,
t

where

U =T SP(SY) e R

We also introduce the following auxiliary objects:

&1(z50q;q) = 711_{1;0 T tr B[(2] + @1,1)_1\If1,2\11'1,2] > 0 (16)

é—\271(2; cq, q) = 711_1}130 Til tr E[(Z[ + @1’1)71\1/171 (ZI + @171)71\11172\11/172] > 0.

While the existence of the limits in (16) cannot be guaranteed in general, the expectations
are uniformly bounded for z > 0 (since so are the ¥ matrices). Hence, by passing to a
subsequence of T, P, we can always assume the limits in (16) exist. In the appendix, we

show that these limits actually exist for a class of correlation structures.
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With the additional assumptions for the mis-specified setting in place, we have the

following analog of Propositions 2, 3, and 4.

Proposition 5 In the limit T, P, P, — oo, P/T — ¢, Pi/P — q € (0,1],

1 ~
lim ftr((z[—l—\lll,l)_l\lll,l) — &(25¢q;9)

T—o00
in probability, where

1 —zm(—2z;cq;q)

z,¢4,49) = )
$(zicq;q) (cq)= =14 zm(—=z;¢cq;q)
and

m(—z;cq; q) = lim Pt tr((2] + @171)_1) )
Furthermore,

v(zieq;q) = ai(q) — (go) '2€(z5cq59) > 0
V(zieqiq) = — (q¢) ' (E(zieq5 q) + 2€ (25¢4;9)) < O
v(zie)  =wv(zeqiq) + 2V (zeq3q) > 0.

In addition, we have

i) The expected return on the market timing strategy converges in probability to

e N T . A o (cq) " é2.1(%; cq;q)
E(z;cq;q) = lim E[7y(2)Rey1|8] = ba q (V(z,cq, q) + ¥ E(z 0q0) >
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ii) Expected leverage converges in probability to
L(z; cq5q) = lim E[f(2)*|8] = q<b*ﬁ(2; cq; q)—c(14b. e 1 (1) —qbu 1 (@)))V (25 cq; q))+A(Z; cq;q) ,

where

(q0) ez eq;9) + 201+ (2 ¢q;9)) (2 ¢4 )€ (23 ¢q; )

Alsesa) =h (1+&(25 45 9))?

iii) R? converges in probability to

2E(z;¢q;q9) — L(2;¢q;q)

2 . . —
R*(z;cq;q) = 1+ b1, (1)

iv) The second moment of the market timing strateqy converges in probability to
V(z;cq; q) = lim E [(7(2) Riy1)?] = 2(E(z; 005 9)) + (14 batbur) L(25¢¢;.q) -

v) And, as a result, the Sharpe ratio satisfies

E(z;¢q;0) 1

V V(2 cq;c) \/2 + (1 + bethi) L(zcqia)

(E(z5eq39))?

SR(z; cq; c)

In general, the behavior of quantities in Proposition 5 depends in a complex fashion on the
correlations between observable and unobservable signals, as captured by the quantities (16).
When both quantities (16) are zero, expressions significantly simplify. It is straightforward to
show that both quantities in (16) are zero if the matrices W, 5, W5, have uniformly bounded
traces. For example, this is the case when W, 5 has a finite, uniformly bounded rank when
P, P, — oo (due to, say, a finite-dimensional factor structure in the signals). We thus obtain

the following result.
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Proposition 6 Suppose that Vp = Dp + Qp where limsupp_, . rank Qp < 0o, while Dp
are diagonal matrices, and Dp, Qp are uniformly bounded. Then, &2 = §1 = 0, whereas

all quantities in Proposition 5 coincide with those for Vp replaced by Dp. Furthermore,

(i) We have E(z; cq; ¢) is monotone decreasing in z and, hence, 0 < E(z;¢q;c) < E(0;cq;¢) <

£(0,0;0), and

(ii) both R*(z;cq;c) and SR(z;cq;c) are monotone increasing in z for z < z, = c(1 +

bi (Vi1 (1) — 0. 1(q))) /b and monotone decreasing in z for z > z,.

(111) in the ridgeless limit as z — 0, we have

E(0; cq; ¢) = baq (1 (q) — (cq) *maleq; @)~ 1gs1/e)

((eq)F =1)7", q<1/ec
L(05¢q;9) = E(0;eq;¢) + (1 + bu(¥u1(1) — qiu1(q)))

f(eq; c), q>1/c
V(0;cq; q) = 2(E(0;¢q;9)) + (1 + biabe ) L£(0; cq; )
v E(05cq;0)
A0 g;6) = V(0; cq; ¢)
(18)

for some m.(cq; q) > 0 and some [i(cq;c) < 0 with fi(1+;¢) = —oo. In particular, if U

is proportional to the identity matriz, W =1, 1 I, then

£(0; cq; ¢) = b,y min{q, ¢~} (19)

is constant for ¢ > 1/c.

The comparative statics of Section 4.2 highlight how, even when the empirical model is
correctly specified, complexity hinders the model’s ability to hone in on the true DGP because

there is not enough data to support the model’s heavy parameterization. That analysis shows
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Figure 4: Expected Out-of-sample Prediction Accuracy From Mis-specified Models

Note: Limiting out-of-sample R? and B norm as a function of ¢ and z from Proposition 6 assuming W is the

identity matrix, b, = 0.2, and the complexity of the true model is ¢ = 10.

that when models are correctly specified, the best performance (both in terms of R? and
Sharpe ratio) comes from simple models. Naturally, a small correctly specified model will
converge on the truth faster than a large correctly specified model. But this is not a very
helpful comparison.

The fundamental difference in this section is that, while raising cq brings the usual
statistical challenges of heavy parameterization without much data, the added complexity
also brings the benefit of improving the empirical model’s approximation of the true DGP.
A simple model will tend to suffer from poor approximation and thus fare poorly in terms
of both statistical metrics like R? and portfolio metrics like expected return and Sharpe
ratio. Thus, our mis-specification analysis tackles the most important question about high
complexity: Does the improvement in approximation justify the statistical cost of heavy
parameterization when it comes to out-of-sample forecast and portfolio performance.

Figures 4, 5, and 6 illustrate the behavior of mis-specified machine learning predictions

and portfolios derived in Proposition 5. In this calibration, the true unknown DGP is
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Figure 5: Expected Out-of-sample Timing Strategy Risk and Return From Mis-specified
Models

Note: Limiting out-of-sample expected return and volatility of the market timing strategy as a function of ¢
and z from Proposition 6 assuming ¥ is the identity matrix, b, = 0.2, and the complexity of the true model

is ¢ = 10.

assumed to have a complexity of ¢ = 10. We continue to calibrate ¥ as identity and b, = 0.2.
We analyze the behavior of approximating empirical models that range in complexity from
very simple (cq ~ 0 and thus severely mis-specified) to highly complex (¢q = 10 and thus
correctly specified). The left panel of Figures 4 shows the expected out-of-sample R?. The
cost of mis-specification for low ¢ is seen as a shift downward in the R? relative to Figure
1. The challenges of model complexity highlighted in previous sections play an important
role here as well. Intermediate levels of complexity (c ~ 1) dilate the size of beta estimates
(Figure 4, right panel), driving down the R? and inflating portfolio volatility (Figure 5, right
panel). These effects abate once again for ¢ > 1 due to the implicit regularization of high
complexity ridgeless regression, just as in the earlier analysis. More generally, the patterns
for R?, B norm, and portfolio volatility share similar qualitatively patterns to those in Figure

1.
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Figure 6: Expected Out-of-sample Timing Strategy Sharpe Ratio From Mis-specified
Models

Note: Limiting out-of-sample Sharpe ratio of the market timing strategy as a function of ¢ and z from

Proposition 6 assuming ¥ is the identity matrix, b, = 0.2, and the complexity of the true model is ¢ = 10.

The most important difference versus Figure 1 is the pattern for out-of-sample expected
return of the market timing strategy (Figure 5, right panel). Expected returns are now low for
simple strategies due to their poor approximation of the DGP. Increasing model complexity
monotonically increases expected timing returns. In the ridgeless case, the benefit of added
complexity reaches its maximum of £(0;0)c™! = b,1b,1¢7! when cg = 1. A surprising fact is
that the ridgeless expected return is exactly flat as complexity rises beyond c¢q = 1, in which
case the benefits of incremental improvements in DGP approximation are exactly offset by
the gradually rising bias of ridgeless shrinkage, see formula (19).

This new fact, that the expected return rises monotonically with model complexity in the
mis-specified setting, induces a similar pattern in the out-of-sample Sharpe ratio, shown in
Figure 6. Rather than decreasing in complexity like we saw in the correctly specified setting,

the expected return improvement from additional complexity leads the Sharpe ratio to also
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increase with complexity. This is particularly true with non-trivial ridge shrinkage, but is
even true in the ridgeless case as long as cq is sufficiently far from unity. In summary, in
the realistic case of mis-specified empirical models, complexity is a virtue. It improves the
expected out-of-sample performance of market timing in terms of both expected return and

Sharpe ratio.

6 Virtue of Complexity: Empirical Evidence From Market Timing

In this section we present empirical analyses that are exact empirical analogues to the

theoretical comparative statics for mis-specified models in Section 5.

6.1 Data

Our empirical investigation centers on a cornerstone of empirical asset pricing research—
forecasting the aggregate stock market return. To make the conclusions from this analysis as
easy to digest as possible, we perform our analysis in a conventional setting with conventional
data. Our forecast target is the monthly return of the CRSP value-weighted index. The
information set we use for prediction consists of the 15 predictor variables from Welch and
Goyal (2008) that are available at the monthly frequency over the sample 1926-2020.2>

We volatility standardize returns and predictors using backward-looking standard devi-
ations that preserve the out-of-sample nature of our forecasts. Returns are standardized
by their trailing 12-month return standard deviation (to capture their comparatively fast-
moving conditional volatility), while predictors are standardized using an expanding window
historical standard deviation (given the much higher persistence of most predictors). We
require 36 months of data to ensure that we have enough stability in our initial predictor
standardization, so the final sample that we bring to our analysis begins in 1930. We per-

form this standardization to align the empirical analysis with our homoskedastic theoretical

22This list includes (using mnemonics from their paper): dfy, infl, svar, de, lty, tms, tbl, dfr, dp, dy, ltr,
ep, b/m, and ntis, as well as one lag of the market return.
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setting, but our results are insensitive to this step (none of our findings are sensitive to

variations in how standardizations are implemented).

6.2 Random Fourier Features

We seek models taking the form of equation (1). In order to evaluate our theory, we also
seek a framework that will allow us to smoothly transition from low complexity models to
high complexity. To do so, we adopt a methodology from the machine learning literature
known as random Fourier features, or RFF (Rahimi and Recht, 2007, 2008). Let G; denote

our 15 x 1 vector of predictors. The RFF methodology converts G; into a pair of new signals

Siy = [sin(wWGy), cos(WiGY)],  w; ~ iidN(0,~I). (20)

S;.+ uses the vector w; to form a random linear combination of ¢, which is then fed through
the trigonometric functions.?> The advantage of RFF is that for a fixed set of input data, G4,
we can create an arbitrarily large (or small) set of features based on the information in Gy
through the non-linear transformation in (20). If one desires a very low-dimensional model
in (1), say P = 2, one can generate a single pair of random Fourier features. For a very
high-dimensional model, say P = 10,000, one can instead draw many random weight vectors
w;, © = 1,...,5,000. The larger the number of random features, the richer the approximation
(1) provides to the general functional form E[R;1|G¢] = f(G;) where f is some smooth
non-linear function. Indeed, the RFF approach is a wide two-layer neural network with
fixed weights in the first layer (in the form of w;) and optimized weights in the second layer

(in the form the regression estimates for f3).

Z3Random features can be generated in a number of ways (for a survey see Liu et al., 2020). Our choice of
functional form in (20) is guided by Sutherland and Schneider (2015) who document tighter error bounds for
this functional approximation relative to some alternative random feature formulations. However, we have
found that our results are insensitive to using other random feature schemes.
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6.3 Complexity, Shrinkage, and Out-of-sample Market Timing

To conduct the empirical analogue of the theoretical analysis in Figure 4, 5, and 6, we
consider a one-year rolling training window (7" = 12) and a large set of random Fourier
features (as high as P = 12,000). These choices are guided by our desire to investigate the
role of model complexity, defined in the empirical analysis as ¢ = P/T. The advantages of
a training sample of a mere 7' = 12 observations are i) that we can reach extreme levels of
model complexity with smaller P and thus less computing burden, and ii) it shows that the
virtue of complexity can be enjoyed in shockingly small samples. None of our conclusions
are sensitive to the choice of training window (see robustness discussion below).

To draw plots along the lines of Figures 4, 5, and 6, we estimate a sequence of out-of-
sample predictions and trading strategies for various degrees of model complexity ranging
from P = 2 to P = 12,000 and varying degrees of ridge shrinkage ranging from log,,(z) =

—3,...,3. One repetition of our analysis proceeds as follows:
(i) Generate 12,000 RFFs according to (20) with bandwidth parameter .

(ii) Fix a model defined by the number of features P € {2, ...,12,000} and a ridge shrinkage
parameter log,,(z) € {—3,...,3}. The set of predictors S; for regression (1) correspond

to the first P RFFs from (i).

(iii) Given the model in (ii), conduct a recursive out-of-sample prediction and market
timing strategy. For each ¢ € {12,...,1,091}, estimate (1) using training observations
{(R¢, Si—1), .-y (Ri—11, Si—12). From estimated regression coefficient, construct the out-

of-sample return forecast A4S, and the timing strategy return B' SiRiiq.

(iv) From the sequence of out-of-sample predictions and strategy returns in (iii), calculate
the average ||BH2 across training samples, the out-of-sample R?, and the out-of-sample

average return, volatility, and Sharpe ratio of the timing strategy.

24We set v = 2. Our results are generally insensitive to «, as discussed in the robustness section below..
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Figure 7: Out-of-sample Market Timing Performance

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described
in Section 6.3. Training window is 7' = 12 months and predictor count P (or ¢T') ranges from 2 to 12,000

using a range of P. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with v = 2.

The inherent randomness of RFFs means that estimates of out-of-sample performance tend
to be noisy for models with low P. Therefore we repeat the analysis (i)—(iv) 1,000 times
with independent draws of the RFFs, and then average the performance statistics across
repetitions.

Figures 7 and 8 plot the out-of-sample prediction and market timing performance as a
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function of model complexity and ridge shrinkage. The wide range of complexity that we
consider, ¢ € [0,1000], can make it difficult to read plots. To better visualize the results
while emphasizing both behavior near the interpolation boundary and behavior for extreme
complexity, we break the x-axis between ¢ = 50 and ¢ = 990.

The first conclusion from these figures is that out-of-sample behavior of machine learning
market return predictions is a strikingly close match to the patterns predicted by our
theory. In particular, compare the empirical results of Figure 7 to the theoretical results
under model mis-specification from Figure 4. The beta estimates and out-of-sample R?
demonstrate explosiveness at the interpolation boundary and characteristic recovery in the
high complexity regime ¢ >> 1.

By far the most intriguing aspect of Figure 7 is the clear increasing pattern in out-of-
sample expected returns as model complexity rises. For z = 1073, which roughly approxi-
mates the ridgeless case, we see a nearly linear upward trend in average returns as c rises
from 0 to 1. Beyond ¢ = 1, the ridgeless expected return is flat, just as predicted by equation
(19) in Proposition 6. For higher levels of ridge shrinkage, the rise in expected return is more
gradual and continues into the range of extreme model complexity.

The increasing pattern in out-of-sample expected return and the decreasing pattern in
volatility above ¢ = 1 translate into a generally increasing pattern in the out-of-sample
market timing Sharpe ratio, shown in Figure 8. The exception is a brief dip near ¢ = 1 at
low levels of regularization as the spike in variance compresses the Sharpe ratio. For high
complexity the Sharpe ratio generally exceeds 0.4.

In our theoretical setting we normalize the expected return of the un-timed asset to zero.
This is of course not the case for the US market return, and therefore to adjust for buy-and-
hold market exposure we calculate the out-of-sample alpha, alpha t-statistic, and information
ratio (IR) of the timing strategy return via time series regression on the un-timed market.

Figure 8 shows that the market timing alpha and IR inherit the same patterns as the average
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Figure 8: Out-of-sample Market Timing Performance

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described
in Section 6.3. Training window is 7' = 12 months and predictor count P (or ¢T') ranges from 2 to 12,000
using a range of P. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with v = 2.

Alphas are versus a static position in the volatility-standardized market portfolio.

return and Sharpe ratio. In the high complexity regime, we find information ratios around
0.3 and significant alpha t-statistics ranging from 2.6 to 2.9 depending on the amount of
ridge shrinkage.

Extreme behavior at the interpolation boundary makes it difficult to fully appreciate the
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Figure 9: Out-of-Sample R? Detail

Note: Out-of-sample prediction accuracy for empirical analysis described in Section 6.3. Training window is
T = 12 months and predictor count P (or ¢T') ranges from 2 to 12,000 using a range of P. Predictors are

RFF's generated from 15 Welch and Goyal (2008) predictors with v = 2

patterns in R%. Figure 9 provides more detail by plotting the out-of-sample R? zooming-in
on the range [—10%, 10%)]. Here we see more clearly that high complexity and regularization
combine to produce a positive out-of-sample R2. In this plot, regularization comes in two
forms, directly through higher z and more subtly through higher ¢ (which allows ridgeless
regression to find solutions with small B norm). For large z, the R? is almost everywhere
positive.

What do market timing strategies look like in the high complexity regime? Figure 10
plots 7(z, ¢) for two empirical configurations. We show raw positions and six-month moving
averages of the raw positions for better readability (our trading results are based on the
raw positions and not the moving averages). The blue line corresponds to the the highest

complexity and highest shrinkage configurations of our empirical model (¢ = 1000 and z =
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Figure 10: Market Timing Positions

Note: Out-of-sample market timing positions for empirical analysis described in Section 6.3. Training window
is T'= 12 months. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with v = 2.
Blue lines show results for the ¢ = 1000 and z = 103 model and red lines for the ¢ = 0.2 and z = 10~2 model

(heavy lines show 6-month moving averages).

103, averaged over 1,000 RFF repetitions). The red line shows the lowest complexity and
lowest shrinkage case we analyze (¢ = 0.2 and z = 1073). The basic timing patterns from
these two models are representative of the results from other model configurations. The
positions advocated by these two models have a time series correlation of 84.5% (87.2% for
their moving average).

The timing positions in Figure 10 are remarkable. First, they show that the high

complexity strategy is a long-only strategy at heart. Positions (or, equivalently, expected
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market returns) from the machine learning models tend to be positive or zero. They almost
never bet on a market downturn. The machine learning model thus heeds the guidance
of Campbell and Thompson (2008) “that many predictive regressions beat the historical
average return, once weak restrictions are imposed on the signs of coefficients and return

)

forecasts.” However, unlike Campbell and Thompson (2008), the machine learns this rule
without being given an explicit constraint!

Second, the machine learning strategy learns to divest leading up to recessions. NBER
recession dates are shown in the gray shaded regions. For 14 out of 15 recessions in our
test sample, the timing strategy essentially zeros out its position in the market prior to the
recession (the exception is the eight-month recession of 1945). And it does this on a purely
out-of-sample basis.

Figure 11 shows the robustness of our main findings in subsamples, splitting the test
sample into halves. The left side of the figure reports machine learning timing strategy out-
of-sample performance from 1930-1974, and the right side from 1975-2020. The figure shows
that the patterns of out-of-sample timing strategy performance with respect to complexity
and shrinkage do not depend on the subsample. Average out-of-sample returns rise mono-
tonically with complexity and decrease with ridge shrinkage, volatility abates once we move
past the interpolation boundary and is further dampened by shrinkage, and information
ratios rise with complexity and are fairly insensitive to shrinkage. In the interest of space
we do not plot the out-of-sample R? or B norm, but these also follow identical patterns to
those for the full sample.

While the patterns are the same across subsamples, the magnitudes differ. Average
returns in the second sample are about half as large as the first. But volatilities are roughly

the same, so information ratios are also about half as large in the second sample. This is

consistent with the machine’s trading patterns plotted in Figure 10. Starting around 1968,
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Figure 11: Out-of-sample Market Timing Performance by Subsample

Subsample analysis of 1930-1974 and 1975-2020. See notes in Figures 7 and 8.



it finds notably fewer buying opportunities and, when it does, takes smaller positions than
in the earlier sample.

Our results seem at odds with the primary conclusion of Welch and Goyal (2008). They
argue that the enterprise of market return prediction, which has occupied large attention
in the asset pricing literature for decades, is by and large a failed endeavor: “these models
seem unstable, as diagnosed by their out-of-sample predictions and other statistics; and
these models would not have helped an investor with access only to available information
to profitably time the market.” But we use the same predictive information studied in that
paper. What is the source of the discrepancy?

The conclusions of Welch and Goyal (2008) are based on their findings of consistently
negative out-of-sample prediction R%2. They do not analyze the performance of timing
strategies based on expected returns or Sharpe ratios. We revisit their analysis with a focus
on timing strategy performance using the same recursive out-of-sample prediction scheme as
in the analysis of Figures 7 and 8. In particular, we use a rolling 12-month training window
and forecast out-of-sample. We focus on a version of what Welch and Goyal (2008) call the
“kitchen sink” regression. Our implementation of this uses all 15 monthly predictors in a
simple, linear ridgeless regression.

Table 1 reports the results. To set the stage, we report summary stats of the buy-and-
hold strategy in the first column.? The market return has a full sample Sharpe ratio of
0.50 per annum, a maximum one-month loss of —4.48 standard deviations,?® and skewness

of —0.41.

25More specifically, the first column reports summary statistics for the market return with rolling 12-month
volatility standardization. Thus, the buy-and-hold version of this asset is itself a basic timing strategy, where
timing is inversely proportional to rolling volatility. We do this simply because the standardized market is
the target in our forecasting analysis. Our results across the board are generally insensitive to, and our
conclusions entirely unaffected by, whether we work with the raw or volatility standardized market return.
As noted earlier, we prefer to use the volatility standardized market because it aligns more directly with our
theoretical framework.

26Because returns are volatility-standardized using rolling 12-month standard deviation, the max loss is
in monthly conditional standard deviation units.
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Table 1: Comparison With Welch and Goyal (2008)

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis

described in Section 6.3 and compared with simple models based on Welch and Goyal (2008).

WG Kitchen Sink High Complexity Machine
Market z=0" 2=10"% 2=10 2=10% v.\Mkt v.\Mkt v.\WG
R? - -97.64  -3418  -0.10  -0.04 - 0.01 - -
SR (IR) 0.50 -0.11 -0.12 0.29 0.46 0.33 0.47 0.31 0.26
t 4.74 -1.02 -1.11 2.74 4.37 3.06 4.46 2.89 2.47
Max Loss  -4.48 -98.49 -71.76 -4.66 -2.43 -2.70 -1.23  -1.14 -0.94
Skewness -0.41 -0.86 -2.96 -1.11 -0.05 -0.04 2.48 2.29 1.97

The first finding of Table 1 is that we confirm the conclusions of Welch and Goyal (2008).
Monthly return forecasts using the usual suspect predictors in ridgeless regression behave
egregiously. The monthly out-of-sample R? from ridgeless regression (z = 07) is large and
negative at —9764%. The timing strategy based on these predictions is also poor. The
Sharpe ratio is —0.11 and is insignificantly different from zero. This seems not so terrible
given the wildness of the forecasts, but it is due to the fact that the strategy’s volatility is so
high. It’s maximum loss is 98 standard deviations. In light of our theoretical analysis, this
agreement with the conclusions of Welch and Goyal (2008) is perhaps unsurprising. With
P = 15 and T = 12, this analysis takes place close to the interpolation boundary, thus
forecasts and timing strategy returns are expected to be highly volatile, as our estimates
confirm. In Table 2, we repeat the same analysis as Table 1 but use a longer training
window of five years. The conclusions are the same as those from Table 1.

Our theoretical analysis also suggests that, in circumstances like these, the benefits from
additional ridge shrinkage are potentially large. Therefore, we re-estimate the Welch and
Goyal (2008) kitchen sink regression with the same range of ridge parameters used in our

machine learning models. The R? from even heavily regularized regressions can remain
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Table 2: Comparison With Welch and Goyal (2008) With 60-Month Training Window

Note. This table repeats the analysis of Table 1 using a 60-month training window.

WG Kitchen Sink High Complexity Machine
Market z=0" 2=10"2 z2=10 =2z=10% v.\Mkt v.\Mkt v.\WG
R? - -0.97 -0.66 -0.01 0.00 - 0.00 - -
SR (IR) 0.50 0.00 -0.02 0.49 0.44 0.10 0.42 0.25 0.27
t 4.74 0.00 -0.14 4.51 4.09 0.93 3.92 2.30 2.51
Max Loss -4.48 -35.82 -25.51 -1.66 -1.38 -0.95 -0.46 -0.42 -0.43
Skewness -0.41 -11.06 -8.45 -0.25 -0.30 -0.09 1.66 1.50 1.33

negative, as seen in the out-of-sample R? of —10% when z = 10. However, with this much
shrinkage, the benefits of market timing become large. The annualized out-of-sample Sharpe
ratio of the strategy is 0.29 and statistically significant (¢ = 2.7). Larger ridge shrinkage
yields larger benefits still. When 2 = 103, the out-of-sample R? becomes —4% per month,
while the annualized Sharpe ratio is 0.46 with a t-statistic of 4.4. This performance is not
due to static market exposure. In the sixth column (“v. Mkt”) we report performance after
regressing the out-of-sample strategy from the fifth column on the market. This has an
information ratio of 0.33 (¢ = 3.1). Also note that for the highly shrunken WG regression
the maximum loss and skewness become more attractive.

These patterns align with the behavior predicted by our theoretical analysis. Near the
interpolation boundary, models can seem defective in terms of R? despite shrinkage, yet they
can nonetheless confer large economic benefits for investors. But much higher complexity
models have further benefits yet. The last three columns of Table 1 show that the machine
learning timing strategy (with ¢ = 1000 and z = 10% in this example) further enhances out-
of-sample performance. The average out-of-sample R? is 1% per month, and it has a Sharpe
ratio of 0.46 with an information ratio of 0.31 versus the market. It also has a significant

information ratio of 0.26 (¢t = 2.5) versus the heavily shrunken (z = 10*) WG strategy. One
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of the most attractive aspects of the machine learning strategy is its low downside risk. Its
worst month was a loss of 1.23 standard deviations, and its skewness is positive 2.48. These
attractive tail risk properties of the machine learning timing strategy are not reflected in
the Sharpe ratio but would be an important utility boost for investors that care about non-
Gaussian risks. Note that the machine learning strategy accomplishes this using the identical
information set as the WG strategy; it just exploits this information in a high-dimensional,

non-linear way.

6.4 Robustness

In Appendix D, we report a number of robustness analyses around our main empirical results.
We investigate the effect of longer estimation windows (120 months, versus 12 in our main
analysis), different kernel bandwidths in RFF feature generation (v = 1, versus 7 = 2 in
our main analysis), and excluding volatility standardization of the market return. The brief
summary of these analyses is that our conclusions are robust to each variation in empirical

design.

7 Conclusion

The field of asset pricing is in the midst of a boom in research applications using machine
learning. The asset management is experiencing a parallel boom in its adoption of machine
learning to improve portfolio construction. However, the properties of portfolios based on
such richly parameterized models are not well understood.

In this article, we offer some new theoretical insight into the expected out-of-sample
behavior of machine learning portfolios. Building on recent advances in the theory of
high complexity models from the machine learning literature, we demonstrate a theoretical
“virtue of complexity” for investment strategies derived from machine learning models.

Contrary to conventional wisdom, we prove that market timing strategies based on ridgeless
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least squares generate positive Sharpe ratio improvements for arbitrarily high levels of
model complexity. In other words, the performance of machine learning portfolios can be
theoretically improved by pushing model parameterization far beyond the number of training
observations, even when minimal regularization is applied. We provide a rigorous foundation
for this behavior rooted in techniques from random matrix theory. We complement these
technical developments with intuitive descriptions of the key statistical mechanisms at play.

In addition to establishing the virtue of complexity, we demonstrate that out-of-sample
R? from a prediction model is generally a poor measure of its economic value. We prove
that a market timing model can earn large economic profits when R? is large and negative.
This naturally recommends that the finance profession focus less on evaluating models in
terms of forecast accuracy and more on evaluating in economic terms; for example, based
on Sharpe ratio of the associated strategy. We compare and contrast the implications of
model complexity for machine learning portfolio performance in correctly specified versus
mis-specified models.

Finally, we compare theoretically predicted behavior to empirical behavior of machine
learning-based trading strategies. The theoretical virtue of complexity aligns remarkably
closely with patterns in real world data. In a canonical empirical finance application—
market return prediction and concomitant market timing strategies—we find out-of-sample
information ratios on the order of 0.3 relative to a market buy-and-hold strategy, and these
improvements are highly statistically significant. The strategies that emerge have some
remarkable attributes, behaving as long-only strategies that divest the market leading up to
recessions. Our high complexity models learn this behavior with no guidance from researcher
priors or modeling constraints.

Our results are not a license to add arbitrary predictors to a model-—one cannot spin
straw into gold. Instead, we encourage i) including all plausibly relevant predictors and

ii) using rich non-linear models rather than simple linear specifications. Doing so confers
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prediction and portfolio benefits, even when training data is scarce, and particularly when
accompanied by prudent shrinkage.
This recommendation clashes with the philosophy of parsimony frequently espoused by

economists and famously articulated by the statistician George Box:

Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive
elaboration. On the contrary following William of Occam he should seek an economical
description of natural phenomena. Just as the ability to devise simple but evocative
models is the signature of the great scientist so overelaboration and overparameteriza-

tion is often the mark of mediocrity. (Box, 1976)

Our theoretical analysis (along with that of Belkin et al., 2018; Hastie et al., 2019; Bartlett
et al., 2020, among others) shows the flaw in this view—Occam’s razor may instead be
Occam’s blunder. Theoretically, we show that a small model is preferable only if it is
correctly specified. But, as Box (1976) emphasizes, models are never correctly specified.
The logical conclusion is that large models are preferable under fairly general conditions.
The machine learning literature demonstrates the preferability of large models in a wide
range of real-world prediction tasks. Our results indicate that the same is likely true in
finance and economics.

Our findings point to a number of interesting directions for future work, such as studying
the theoretical behavior of high complexity models in cross-sectional trading strategies, and
more extensive empirical investigation into the virtue of complexity across different asset

markets.
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A Proofs

Proof of Lemma 1. The proof of Lemma 1 follows directly from Proposition 2.1 in Yaskov

(2016). O

Proof of Proposition 1. We define 7% = 7,(8)/(1 + (S)8)?) to be the optimal strategy

maximizing the unconditional Sharpe ratio. First we consider 7TtQ. Then,

(Si8)?

E[WtQRHJ] = E[WtQ(S;B)] - E[W

]

whereas
Ey[R},\] = o+ (Si8)°

and hence

(S18)*Ex[RE, )]
(0% + (515)?)*

(518)

E[(my)* R, ) = B o7+ (SIB)2

| =E

].
Thus,

o _ CI
o) = (<12 gl
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At the same time, for the m; portfolio, we have
ElmRin] = E[(8'S)?] = E[3'¥p) = 8'¥p (21)
whereas, defining 3 = U283 and using that S; = UY/2X,, we get

o' E((m)*Riy] = o' B((m) B R} 1] = E[((Si8))*(0” + (S18)°)]

= o’BVB + E[(S/8)"] =0’BUB + E[(X5)"] (22)
= 0'2,6/\115 + E[ Z XilXigXi3Xi4Bi1/§i2ﬁ~i33i4]

Since all first- and third-order moments of X are zero, the only terms that survive are those
there two pairs of 7 indices are identical, or all of them are identical. For the first one, there

are three possibilities, and all second moments of X; equal one. This gives

E[ Z Xi1Xi2X13X24ﬁ21512513ﬁl4] 73H6”2 + Z Xz4t _3>B4

11,12,13,14

and hence

o E[(m)?R2,,] = 0*BUS + 3(8UB)? + Z (X} —3)5} (23)

The claim of the proposition follows by using Taylor approximation and

(S8 _ (5B
EP

1G5 4 oqe).

O

The following result of Silverstein and Bai (1995) and Bai and Zhou (2008) relates the

limiting eigenvalue of distribution of U to that of .
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Theorem 7 For any ¢ > 0 and z < 0, the distribution of eigenvalues of U in the limit as
P, T — 0o, P/T — ¢ converges to a distribution whose Stieltjes transform, m(z;c), is the

unique positive solution to the equation

mze) = —1czm(z;c) my (1 — —Zczm(z;c)> ' (24)

Furthermore, for ¢ > 1, there exists functions m.(c) > 0 > n,(c) such that cm.(c) is

monotone decreasing in ¢ and
m(—zc) = (1—c Nzt + mu(e) + n.c)z + O(?).

We will need an auxiliary

Lemma 2 For any sequence of bounded matrices Ap, we have
PilslepSt — Pil tI‘(Ap\If) — 0 (25)

18 probability.

Proof of Lemma 2. The proof follows directly from Proposition 2.1 in Yaskov (2016).

Lemma 3 We have
P tr(Qp(2I +U7)™Y) — E[P ' tr(Qp(zI + 7)™ M) — 0 (26)

almost surely for any sequence of uniformly bounded matrices Qp.

Proof of Lemma 3. The proof follows by the same arguments as in Bai and Zhou (2008).
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Let Ury = > 7zt 5757, By the Sherman-Morrison formula (see Bartlett (1951)),

. . 1 - 1
24 U) = (2l Up,) 7t — (2L Tg,) TS, S+ -
( T) ( 1) 7 1) SeS( ) )8 1 ) 1S,
(27)
Let E. denote the conditional expectation given S;.1,---,S7. Let also
1 3 -1
qr(z) = Ftr(z] +Ur)"Qp.
With this notation, since \ilT,T is independent of S, we have
1 —1
(Etfl — Et)[ﬁ tI‘(Z[ + \I’T,T) QP] = 0
and therefore
T
gr(2) = Elqr(2)] = > _(Er-algr(2)] — Erlar(2)))
t=1
1T
= S By — E)ltr(=] + Wr) ' Qp — tr(2] + U7 Qp)] (28)
t=1
T
= Z By — B[y,
where we have used (27) and defined
1 - 1 . .
")/t = tr <T(Z] + \IJT’t)ilst(I —|— TS{(Z[ + \IJT,t)ilst)ilsz(Z[ + \IjTyt)lQp) (29)

We will need the following known properties of the trace:

o8



Lemma 4 If A, B are symmetric positive semi-definite, then
tr(AB) < tr(A)[ B

and
tr(AY2BAY?) < tr(B) | A

Thus,

1 - 1 A .
lvell < NQpItr { (2T + Wr) 'Se(] + = Sy(2] + W) 7 S,) 7 Sy(2] + W)™
T T

1 A 1 A A
so <f<21 + \I[Tvt)_l/QSt([ + TStI(Z] + ‘I’T,t)_lst)_lst(z-f + ‘I’T,t)_l/2> (30)

= 2z 'tr(B(zI+B)™) < Nz 1,

where
B= %S;(zf +Up,)7 S, e RVXV,
Thus,
(Ei_y — E))[tr(zI + U7)"'0) = (E,_y — E))[]

forms a bounded martingale difference sequence. Applying the Burkholder-Davis-Gundy
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inequality (see, e.g., Burkholder (1966)), we get

T qa/2
Ellar(z) = Elar(2)]|"] < K,P™E (Z (B — Et)[%]l2>

t=1

(31)

—q/2
< K, (2N/z)1p~9/? <§) .

Almost sure convergence follows with ¢ > 2 from the following lemma.

Lemma 5 Suppose that
Ell X < T

for some o > 1 and some q > 0. Then, X7 — 0 almost surely.
Proof. It is known that if

ZProb(]XT] >eg) < 00

T=1

for any € > 0, then X7 — 0 almost surely. In our case, the Chebyshev inequality implies

that
Prob(|Xr| >¢) < e E[|| X < T7¢

and convergence follows because o > 1. U
The proof of Lemma 3 is complete. O

Proof of Proposition 2. The proof is based several steps.

o Let

A 1 ,
Vry = ; S, S (32)
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Then, by the Sherman-Morrison formula (27),

(ZI + @T)_lst = (Z[ + \i’Tﬂg)_lSt
1

1 . ~
— (2l + V) 1S,SU(2 4 Wpy) LS,

T 1+ (T)~1S)(2 + Uyp,)~1S,

1
1+ (T)18)(2] + Wypy)~ 1S,

= (2 + \i/T,t)*lst
e By Lemma 2,
PLS (2] 4+ Up,)7HS, — Pl tr(U (2] 4+ Upy)™h) — 0
in probability. At the same time, by Lemma 3,
P lr(U (2] +Up) ™) — E[P " tr(W(2] + Upy)™Y)] — 0
alsmost surely. Thus,
PRSIzl + Uy ,)t S, — E[P M tr(U(2] +PUry) )] — 0

is probability.

e Theorem 7 implies that

P U E[(zI +U7) Y — m(—2c)
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e Now, we have

1= P ' tr B[(2] + W)~ (2] + ¥p)] = P‘1 tr E[(z] + Wr) 'z + Pl tr B[(2] + Up) Mg

= zm(—z,¢) + P U trE[(2] + Ug)~ ZStS/

- 1
= {symmetry across t} = zm(—z,c) + P_ltrE[(zI—I—\I/T)_INStS;]

= {using Sherman — Morrison (33)}
1 /
= —— 5]
1 + (T) St(Z[ + \IJT,t) St
P_lS£(Z[+ \ijTJ)_lSt ]
1+ (T)~18)(21 4 Wyp,)~18,

= Z??”L(-Z,C) + PiltrE[(Z[—i-\ifT’t)ilSt

= zm(—z,¢) + E|

(37)

Now, E[T tr(U(2I+U7,)"")] < ||¥|/z~" and hence is uniformly bounded. Let us pick
a sub-sequence of T' converging to infinity and such that E[T~! tr(W(z1+ @Tyt)_l)] —q
for some g > 0. By (34),

P71S)(21 + @T,t)—lst . c g
1+ (T)~18)(21 4+ Wyp,)~18, 1+gq

in probability and this sequence is uniformly bounded. Hence,

P7ISI(21 + \i/m)_lSt ] clq

E| < —
1+ (T)_lsé(ZI + \IJTVt)_l»S’t I+ q

and we get

1—zm(—=z,¢) =

Thus, the limit of €(z; ¢) = E[T" tr(¥(21+¥r,)")] is independent of the sub-sequence

of T" and satisfies the required equation.
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The proof of Proposition 2 is complete.

Proof of Proposition 3. First we show
BUB = (i — ¢ 12E(2)
in probability, and then we establish the identity

tr(UBB) — bu(thes — 22¢7E(2) — 2271 (2)) + £(2) + 2€'(2)

in probability. We start with the observation that

T T

1 .

T Z SiRip1 = Z (SiB+e1) =VYr8 + qr,
=1 =1

where we have defined

1 T
ar = T ; S£5t+1 .

Therefore,

8= (21 + ) (T + qr)

(39)

(40)

(41)

(42)

By a standard application of the law of large numbers, ¢ — 0 in Ly and hence also in

probability. We will be using a ~ b to denote that a — b — 0 in probability.

Using (76) and Assumption 4, we have (using that ¢, are independent of S; and have zero
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means) that

~

B'E[S,S;)6
— ﬁ’E[Sth](z]vL\i/T)_l(‘i’Tﬁ + qr)

B (21 +Up) 0,

Q

= {by Lemma 1}}

2L, Pty B[ (2] + W) g

) ) (43)
= b, P tr B[V (2] + Up) Y2l + Vg — 21)
= b, P Ur E[U — 20 (2] + Up) Y]
= b P! <tr\I’ — 2tr E[(21 + \ifT)_l\I/])
= {by Proposition 2}
=T 0o DuV(2) .
At the same time,
tr(¥B3)
= tr(U(2l + U7) N T8 + qr)(UrB + qr) (2] +Tp) ) "

= tr(U(2] + V) Y (U8 + qr) (BT + ¢4) (2] +Up)™)

~ (U (2] 4 Up) N U838V + qrgy) (2] + Up) ™)

where we have used the fact that the terms that are linear in gy converge to zero in
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probability. Now,

! 1 !

Blard;|S] = 75 BY_ Sieen 3 enn S, 19
t t1

1 ' '

= ﬁE[ZStEtJrlEtlHStJS]
t,t1

1 ’ /
= ﬁE[zt: Sierr1€1115¢]5]

1 ’ '
— Tz Z StE[5t+1€t+1|S]St

t

1 ;1

= _ZStSt = T\I[TJ

and it is straightforward to show that the contributions coming from

T_2 Z St(gt-i-lg;l—i-l — 1>Sl:1

t,t1
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are converge to zero in probability. Therefore, (44) takes the form

=

tr(Bp)

= tr(U (2] + Up) Y (U8 Vs + qrdy) (2] 4+ Up)™h)
= (U ) (B 4 ) )
= (U] + V) B8 U (2 + V) )
+otr(U(2] + @T)l%xixT(zl + W)

= tr(Up(z] + V) (2] + Up) 107 55)
+otr(W(a] + xifT)—l%(zI + Wy — 2)(2] + Up) )

= {by Lemmas 1, 3 and Vitali's thorem}

2L b, PV tr E[Ug (2 + Ug) (2] + Ug) "y

v LB W) (T + U (2] + Bp) 7))

— et (UE[(2 + W)~ (2] + Bp) 1)

'ﬂ»—'ﬂ

= b, P tr B[ (2] + W) g (2] + Bgp) 7]
1 ~

+ 7 tr(WE[(2] 4+ V7))
1 A

— 2 tr(VE[(2] + Ur)?)

= Terml + Term2 + Term3.
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We now proceed with each term:

(2] +Up) "Wy (2] + U7) ! = {all matrices commute} = (21 + ¥y) 202,
= (2 4 V) 22 4 2207 + 22T — 2205 — 22))

= (2 + V) 202 4 2205 + 221 — 22(Uq + 21) + 221)

= (2] +Up)2 ((zl + Uy = 22(Ug + 21) + 221)

= T — 222l +Up) 4 22 (2] + Tp) 2.
Therefore,

Terml = b, P~ tr E[W (2] + \i/T)_I\i/T\i/T(z] + \i/T)_l]

= b P B[O — 2z(2] + V)t + 22(2] + Ug) 72,

and
Term2 = %tr(\PE[(Z’[ +U0)7) = £(2)

by Proposition 2, and hence

d 1 SNl
o (VE[(s] +¥7)7Y) = ()

by the Vitali theorem. However,

L WE[(T + 7)) = — (V[T + Fr)?)

dz

and hence
1tr(xpE[(z1+\if ) — —ig(z)
T r dz '
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Summarizing, we get

d
T =
erm3 — zdzf(z),

whereas

Terml — b,P tr B[W(I — 22(214+Ug) 422 (214 07)2)] = b (1he1—22¢ 1 (2) =221 (2))

and hence

tr(PE[BF]) = Terml + Term2 + Term3

= b.0(z;¢) — ¢V (z;¢)
Now, by (6), we have
MSE — E[R%] — 2E[3'S,S|6] + tr E[38'V]
and therefore equations (43) and (53) imply that
MSE — E[R;.|] — 2&(z;¢)+ L(z;0)
and hence

MSE 2&(z;¢) + L(z;0)
R*(z;¢) = 1— —
= = 1 ) B
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whereas

26 (z;¢) — L(z;¢) = lim P~ tr(20, (2] + U) — b, U2 — W) (2] 4+ U)"20) 57
57
= lim P tr(W(2b,2 — ¢) 4 b, 02) (2] + 1) 20)

and the optimality of z, = ¢/b, follows because the function f(z) = ((2b.z — )N+ b, %) /(2 +
A\)? attains its maximum at z = z, for any value of A > 0. The proof of the first part of
Proposition 3 is complete.

To study the ridgeless limit, we will need the following auxiliary result.

Lemma 6 Suppose that ¢ > 1. Then,
m(z;c) = (1 —c Yzt +mu(e) +n.(c)z + O(F*), z— 0. (58)

Furthermore,

m.(c) = ¢ ((ouen) e o b FeT?) + O(cTY)

(59)
n.(c) = ¢ (=(0ubi)’c® + 303@0*720)71 + O(c™).
Proof of Lemma 6. Let o, = 1.
Case 1: ¢ > 1 Substituting
m(—zc)=(1—c)z™t + em(—zc), (60)

into the equation of Theorem 7, we get that m satisfies

L / (1= (c—1)mz)dH (x)

m(l+mx)
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Our goal is to understand what happens when z — 0. We have

/ (1 —(c—1)mz)dH (x) _0

m(l+mx)

always has a finite solution m.(0,c¢) > 0 because

dH (z)
f J m(+maz)

zdH ( x)
f (1+mx)

is monotone decreasing in m, from 400 to 0 and hence it crosses the level ¢ — 1 somewhere.

Thus, m.(c) is the unique solution to

f dH (z)

(1+mx) .
(1+m:r;

and m(z) stays bounded and smooth when z — 0+ by the implicit function theorem.

Furthermore, substituting m (0, c) = ac™ + be™2, we get

dH (z) B v dH (z)
/ (ac™t 4+ bc2)(1 + (act +be2)z) (e 1)/ (1+ (ac™t +bc2?) x) (62)

that is (up to negligible terms)

alc/(l —bc a4+ (bt a)*)(1 = (ac™t + b ) x + (ac™t + be M) 2?)dH (2)
(63)
= (c—1) /x(l —(ac P + b B x + (act 4+ be )2 2?)dH (x)

Equating the coefficient on ¢ gives

ale = coa,
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while the constant coefficient gives

—bCL_2 - 0*¢*,1 - _ao-fl/)*,Q - 0-*1/}*,1

and hence

a=(ou1)"", b=0a’0lhs = 0, Va7
and

ma(c) = cu(c) o ¢ (0nthen) T 0t 1)
Thus,

em/(—zc)=(1—c)z 2 + m'(—z¢) = (1 —c)z? + O(1)
Differentiating the identity

with respect to z, we get

O (- [tV [ ) =1

Furthermore,

[atiens — 0 i
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and therefore

r*dH(x rxdH(x
(c_l)/(l—i—mx < (e=1) M 1+ma: /mzl—I—mx (65)
B /(1+m* x)dH (x) (14 2m, z)dH (x)
B m2(1 4+ m, x)? m2(1 +m, x)?

and the claim follows with

na(c) = ¢! (-/“fm*x?dH(x) +(c—1)/ 5”26“7(5”)2)1 <0

(M4 (1 + My x))? (1+ m,x)

We have

Furthermore,

) ~ (-0 [ i e s €0 [ et mg)

1+bct/a)(1+ (ac P +bc?)x ac™! + be

-1
~ (—a_202 /(1 + 2actw — 2bc™ ' Ja — 2ac™ 'x)dH (v) + c/x2(1 — 2ac™'x) dH([E))

-1

~ (=a?P 4 (2a7%b + 029, 0)c)
= (0’ + (20tben) 0 /U2 | + 0%hu0)e)
= (—(0' ¢ 1)262 + 30' ¢ 2C>
(66)
when ¢ — 0. O
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We will now use this lemma to prove the behavior of the ridgeless limit. We have

€)= —1+c (e =14 2m(—zc))

= —1+c 1 (zma(e) + 22n.(c) + O(z%))

= 1t (ema(e) (1 2na(e)/mule) + O(2)) (67)
= 1t ema(e) (1 - 2na(e)/ma(e) + O(2))

= e em@) !~ @m0 + 0()

and hence

V(2) = —cHE+28) = —cH(~1 - c'n(c)m.(c)* + O(2))
converges to a finite limit when z — 0. Thus,

L(z;¢) =b,(v+2V) — v = b (b1 — ¢ *mu(c) ™) + (=1 — ¢ 'n(c)m.(c) %) + O(2)
Hence,

26(0;¢) — L(0;¢) = bty — c*mu(e) ) + (1 + ¢ nu(c)ma(c) )

The proof of Proposition 3 is complete. 0J

Lemma 7 Let a = o,.. We have
1—zm(z) = Y10z =22 (hup+ el )a> +27°0° (o +3cthu o1 +7U0 ) + O(274) (68)

for z — oo.
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Proof of Lemma 7. Then, Theorem 7 implies

B zdH (x)
m(=2) = / z(l—c+czm)+ 2’

implying that zm(z) — 1 when z — oo, whereas

B zdH (x) B xdH (x)
1—zm(z) = 1_/x(1—c+czm(—z))+z = (1—c+czm(2))/x(1_C+sz(_z))+z;

and therefore

1—2m(z) ~ 2 'a,,,

and

1 —2m(—2) — a2

B xdH (z) _

- (1_C+sz(z))/x(1—c+czm(—z))+z — . 1az

_ - —2\y,—1 zdH (x) -1

= (1—czlahs + O(z72))z / e (1 lapn, + 0G0 £1 i 10z

~ (1- cz_la@/)*vl +0(z7%)z! / %(f)l — ¢*71az_1 (69)

~ (1 —cztahy +0(27%)z! /(w — 2?2 YdH (x) — .qa27!
~ 2 M0 — 0a?2 7% — ez 2a? f,l —hpazt + O(z7%)

= —2_2(@/)*,2‘1‘0@/)3,1)@2 + 0(z7)

Now, we can expand to the higher order. We have

1—c+cezm(—z) =1—c(l—zm(—2)) = 1—cz ' (Yo1a— 2" (hop + bl )a® + O(z7?))
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and hence

1 —z2m(—2) — w*,laz_l + Z_Q(ZZJ*Q + 0@03,1)@2

= (L—cz7 (upa — 27 (Y + il y)a® + O(7%)))

xdH (x) . » S
X 2(1— 2 (hu1a — 27 (hup + U2 )a® + O(272))) + 2 — 102" + 2 (Ve + s )a

— (L= e Waa— 2 (W + b2 )a? + O(x72)

1 xdH (x) B . i Y
XZ./mlu—mwwm+1+az% Veaaz 2 Wz ¥ oy )a

~ (1 —cz M thepa — 27 (oo + 01/1371)&2 + 0@z H))z ! /:B(l — 22 (1 — ez Wby qa) + 22272)

— 1027t + 27 (g + C¢3,1)a2
~ (1= e (hora— 2 (on + e )a? + O(x2)))2 <¢*’1“ s cw*w*’l))

— a2 + 27 (Y2 + eyl a?

= ho1az " — 27200 + 2700 (o3 + i)

—cz 2 1a(Vna — 27 b na®) + ez (Yo + C¢f71)a2w*,1a + O™ —tepazt + 272 (Yoo + czﬁ,l)a?
= 27%0° (Va3 + i)

— ez 2 ra(—2 W 00?) + 27 (Yu + Wl ) Para + O(z7Y)

= 2730% (Va3 + 3t othus + C2¢§,1) + 0(z7).
(70)

The proof of Lemma 7 is complete. 0
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B Proofs for the Mis-specified Model

We will be using a slightly simpler notation S;; = St(l) and Sio = 5’,5(2). Then,

MSE = E[|Ryy1 — Sp1 5]
= tr B[Ry Ry — 2E[8'S/Si1B1] + trE[St,l/BlﬂAiS;,l] (71)

= tr B[Ry R, — 2E[8'SiSi151] + tr E[Uy,513]

where Bl is the estimate of the first component of the whole § vector. We will also denote
¢ = ¢¢ = P;/T and omit the dependence on ¢ in all the functions. Finally, we will use the
notation & 1(z) = lim T~ tr E[(21 + ¥)~"¥] to denote £(z; cq; q).

The following is true.

Lemma 8 We have

E(z¢1) = lim E[B'S)S, 1 1]

-1 (72)
1 1 c'&1(2)
c (1/} ,1 Cl 25(2)) 1+ 5171(2)
where
. 1 - _
5271(2) = hm —tr E[\Ijl’Q\PQ’l(ZI + \IIT,Lt) 1] (73)
T—o0 T
Proof of Lemma 8. We have
St = Si1b1 + St2f
and
1 1 & .
T > SR = T > S (SiB+e) = YrB + qr, (74)
t t=1
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where

T
1
Ir = 7 ; Si1€e41 (75)

and

‘i’Tﬁ = ‘i’T,151 + ‘i’T,ﬁz

where
1 T
wmzfgy%&hksz

Therefore,
B = (2l + V1) Y(Ur1B1 + Urafs + qr). (76)

Using this identity and Assumption 4, we have (using that ¢; are independent of S; and have

zero means) that

E[B'S,S15]
= E[(B1V11 + B3Us1) (2] + @T,l)il(‘ilT,lﬁl + @T,252)]
= tr E[\Ile (Z[ —|— @le)_l‘i;'fﬁﬁl]
+ BBV 1(z] + @T,1)_1‘1’T,252]
. . (77)
+ E[ByUsq (2] + Wr) "Wy 5]
+ E[BVq (2] + \i]T,l)ilki]T,Zﬁﬂ
= {by Lemma 1}

pi;b b* P_l tr E[\IJLl (Z] + \i’TJ)_l\i/TJ] + P_lb* tr E[\Ifg,l(Z] + \iJTJ)_l\i/T,Q] .
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The first term 1is

Pl tr E[Wy (2 + Upy) " gy

(78)
= P B0 (o1 + W) T+ B — 2D)] = S — o #60(2)
To compute the second term in (77), we will need the following lemma.
Lemma 9
1 . .
St B[Us, (21 + Upa) W] — ¢ &a(2) /(14 &1(2)) (79)

Proof of Lemma 9. We have that, by symmetry over time, and using the Sherman-Morrison

formula (27), we get

1 N R
F tr E[\Ifgjl(zf + \IIT71>_1\IIT72]

T
1 A .1
= ? tr E[‘I’2,1<ZI —+ \I/TJ) 1? tzz; SmSt’,Q]

tr E[Uo, (21 + Ur1) 715,15 )
tI‘ E[\DQJ ((Z[ —|— \i]TJ’t)il

- _ 1 - _ _ 2 _ 80
(T W0 ) e S0 (T 4+ B0 ) 500) S0 (2 + 1)) Seast) )

e ] Rala T T

= —1tr E[\I’Zl(ZI + \ijT,l,t)_ISt,l‘S;,z]
1 ~
— F tr E[\I’271(ZI + \IJTth)_lSt’l([ + CT)_lCTS;Q]
1 A
= ﬁ tr E[\DQJ(Z] + \I/TJJ)_I\D,Q’I]
1

- FE[SLQ\I/QJ(ZJ + W) 7181 (1 + Cp) i)

where we have defined

1 - _
CT = ?5271(21 + \IJT,l,t) 1St71
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By Lemma 2 and (34),
1., 7 -1
Cr = me(z[ + W) Sia = &a(2)

in probability. Furthermore, (1 + C7)~'Cy is uniformly bounded.

By a similar argument,
1 U T -1
?St72\112,1(21 + \IJT,Lt) Stﬂ — 5271(2) (81)

in probability, and these variables have uniformly bounded L norms. We will need another

auxiliary lemma.

Lemma 10 Suppose that X0 — X — 0 and Yr — Y — 0 in Ls, and all variables have
uniformly bounded Ly norms. Then, E[XrYr] — E[XY] — 0.

Proof. We have
E[X7Yr] — E[XY] = E[(Xr — X)Yr| + E[X(Yr —Y)]

and the claim follows from the Cauchy-Schwarz inequality. 0J

Thus,

1 A A
ﬁ tr E[‘IIQJ(ZI + \I/TJ)il\I/T’g]
1 ~
= Ftr E[‘PQJ(ZI + \I]TJ’t)*l\P/Z’l]
— ltrE[qf (2] + Vg1 ) 1S (1 + Cp) ' CpS! (82)
P 2,1(% + T,l,t) t,l( + T) T t,2]

— ¢ '6a(2) — ¢ '61(2)81(2)/(1+ &11(2))
= ¢ '61(2)/(1+€11(2))

The proof of Lemma 9 is complete. U
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Lemma 8 follows now from (77) O
Lemma 11 We have

L(z) = limtr(V, E[35))

= %b*(w*J((l) - 2201_1§1,1(2) - 2’2@1—151,1(2)) + (1 + b*P_l tr \112’2)(5171(2?) + ZﬁLI(Z)) (83)
+ (1 +€(2) e M

— 20.(§1.1(2) + 261, (2)) (1 + &1,1(2)) T o1 62a(2)

Proof of Lemma 11. Let @T(l, 1) be the first row in the 2 x 2 block representation of 0.
Then,

(¥, E[BB)

= tr(U El(2] + V) N (Up(1,))8 4+ qr)(Ur(1,)8 + qr) (2] + Vp1)7Y)

= (U1 B[(z] + W) (Ur(1,5)8 + an)(B0r(1,2) + ap)(z] + Vry)7"]) (84)
= (U B[(2] + V) 7 (Ur(1, )88V (1,:) + qrap)(z] + V1))

= tr(Uy 1 B(2] + Upy) "N (Up(1, )88V (1,:) + qrdy) (2] + Wpq) 1)

Formula (45) still holds with ¥ replaced by ¥, and calculations in (46) imply

(U1 Bl(2] + V) T ardp(2] + Wra)7Y) = &a(2) +260,(2). (85)
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It remains to deal with

tr(Uy 1 E[(2] + Upq) 7 (Up(1, )88 0(1, ) (2] + Upp)7Y)

= tr(V 1 E[(2] + @T,1)71(@T,15151‘3T,1)(21+ @T,I)fl])

+ tr(Vy 1 E(2] + ‘i’T,1)71(‘@T,1,25252¢’T,1,2)(ZI + @T,l)il]) (86)
I8 P tr (U Bl(2] 4 W) N2 (2] + Fpy) 7))

+ P_lb* tr E[\I/Ll(Z] + \i[le)_l\i/T’LQ\i/T?LQ(Z] + \TJTJ)_I]
by Lemmas 1 and 3. The same calculations as above imply that

. . . c
P, tr(\lfl,lE[(z]—i-\IfT,l)_l\I/ZT’l(z]—i-\IJT,l)_l]) — fb*(zb*’l(q)—2201_151,1(z)—zzcl_lglﬁl(z)).
(87)

Thus, it remains to deal with the second term in (86). We have

Pilb* tr E[\Ifl’l (ZI + ‘;A[/Tyl)il‘i/TJ’g\i/T’l,Q(ZI -+ \ifTJ)il]
= Pilb* tr E[\Ifl’l(Z[ + @T’l)il\TJT’LQ@T’LQ(ZI + @le)fl]
1 A .
- P‘lb*ﬁ tr B0y (2] + U70) ™Y 8018, 550250, (21 + W)~
t1,t2

1 . (88)
= P_lb*— tr E[\Pl,l (Z[ + \I/T,l)_l (T‘St1,15t/1,25t1,2s£1,1

T2
+T(T - 1) St1,18;1725t2,2522,1> (2] + Ug1) 7]

= Terml + Term?2.

Here,

1 . .
Terml = P‘lb*f tr B0, (2] + \IITJ)_1St1,1521725t1,252171(z[ +Wrq) Y (89)
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and

Term2 = (1 — T_I)P_lb* tr E[\Ilm(z] + ‘i/TJ)_15t1,1521,25t2,2522,1(Z] + \i/TJ)_I] . (90)

Using the Sherman-Morrison formula (27) and defining Cr = S} (21 + Ur14)"'Spq, we get

(2] +Up1) 1Sy 1 = (21 + Vpy,) 'S, 1 (1+ Cp) 7t (91)

and therefore

Terml

1 A
= P‘lb*f tr E[Wy (2] + Vg )" Sy, 1 (1 4+ Cp) ™
X 821,23751,2(1 + OT)_IS£1,1(2] + @T,l,t)_l]

1 A .
= P_lb*? tr E[S;hl(Z] + \I/T,Lt)_l\lfl’l(zf + \I/T,Lt)_IStMSAQStLQ(1 + CT)_Q]

Now, Lemmas 2, and 3, and the Vitali Theorem together with the fact that S} is independent

of \ilTJ’t imply that

1 - A 1 A .
TS£’1(Zl—f—\I/T’Lt)_l\I/l’l(ZI-{—\I/T’Lt)_lSt,l — TE[tr(\Ile(z]—|—\I/T,17t)_1‘11171(z]—|—\IJT’1¢)_1)]

(93)
in Ly, whereas
P78 28k 2(1+Cr)™2 = PhtrWan /(14 &11(2))?
in Ly. Therefore, Lemma 10 implies that
Terml — b*a71(z)P_1 trWoo/(1+ 5171(2))2 (94)
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where we have defined
—~ 1 n ~
517117“(2) = TE[tI‘(\Ifl,l(ZI + \I}TJ)_I\I/Ll(Z] + \I/TJ)_l)]

We will now need the following lemma.

Lemma 12 We have
1 A R -
TE[tr(‘I’l,l(Zf+‘1’T,1)_1‘1’1,1(21+‘I’T,1)_1)] — &1(2) = (&1,1(2)+2811(2) (1+&1(2))? (95)
Proof of Lemma 12. We have
1 2 -1
? tr E[\Ifl’l(Z[ + ‘IJTth) ] — 51’1(2)
by (9) and therefore
1 A . 1 .
? tr E[(Z[ + \InyLt)_l\I’l’l(Z[ + \IIT717,5)_1} = T tr E[\If171(2’[ + \IIT717,5)_2] — —6171(2) .

Lemmas 2, and 3, and the Vitali Theorem imply that

1 . )
TS£1,1(ZI + ‘Ingl)il‘I/Ll(ZI + \I/TJ,t)ilS;l’l
) (96)
— e By (2] + W) W (2] + ¥m) 7] = 0

is probability. In the next equation, to simplify the expressions, we will use Xr ~ Yr to
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denote the fact that X7 — Yr — 0 as T — oo. By (91) and (96),

1 ~
6171(2) = T tr E[‘IJLl(Z[—F \IJle)_l]

- % tr B[(2] + Wy ) (2] + Wpy) 7 0y (2 + Up) 7Y
~ —z261(2) + % tr E[@TJ(ZI—I— \ifT71)_1\111,1(zI+ \if;r;l)_l]
= {Ur =T7') S8}
t
= —2£1,(2) + % Dt E[S,18) (2 + Urg) Wy 4 (2] + W) 7
t

= —zfil(z) + % tr E[St713£71(z] + \i/T,l)_I\I/M(ZI + \i/Tvl)_l]
= () + % 0 B[(2] + ) 8,08y (2] + ) 0]
= _Zfil(’z)

+ % tr E[(2] + Up1,) " Sia(1+ Cp)71S] (2] + W) 710y 4]

= —251,1(2)

1 A .
-+ f tr E[(l + CT)_25£171(ZI + ‘IJTvl)_l\Ifl’l(ZI + \DT,l,t)_lstl,l]

261 (2) + (1+€1(2)%60.(2)

Q

and the claim follows. The proof of Lemma 12 is complete.
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Thus, it remains to deal with Term2 in (88). By (91),

Term2 =~ P b, tr B[V, (2] + \iIT’l)—IStl?lst/hzstQ’QSt/Q’l(ZI +Upq) Y
= P tr B[S, (2] + Up1) "Wy (2] + Wrp) 7 S0,15), 2S0.0]

~ P tr E[(L+ Cp)'S), (2] + Wrpy,) "

X Uy (2] + g 0) S (14 Cr) 7S], 55k, 2]

~ P b, tr B[(1+ CT)_ISI{QJ

~ 1 ~ ~
X ((Z[ + \IJT,LthQ)_l - f<ZI + \I/T71,t1’t2)_15t1’1(1 + CT)_ISIZLI(Z] + \I[T,l,tl,h)_1>

. 1 . .
X Wy ((Zf + Upi,) ! — f(Z] +Ur1)  Sua(1+Cr) 'S, 1 (21 + ‘I’T,l,n,m)_l)

Spa(L+Cr) 'Sy 25 2]

= Pb.tr B[(1+Cp)7'S,, 4

A 1 A A
X ((ZI + ‘I]T,l,tl,t2>71 — T<ZI + \IITJ’tl’tQ)ilStl’l(l + CT)ilsélyl(ZI + qu,l,tl,tg)l)

~ 1 ~ ~
X \I]Ll ((ZI + ‘I/T’Ltht?)il — T( I+ \I/T71,t1’t2)715t2,1(1 + CT)’lSQQJ(zI + \IJT,l,tl,h)l)

Stl,l (1 + CT)il‘Sz{/l,ZStm?]

= Pl tr B[(1+ C'T)AS;QJ

X ((’Z[ + \ijT,l,tl,t2>71\Ijl,l<ZI + \iIT,l,tLtQ)il

1 - _ _ - _ A _
- _( I+ ‘IJT,Ltl,tz) 1575171(1 + CT) 15;/1,1(21—’_ \IJT,1¢1¢2> 11111,1<’ZI+ \IIT,l,t17t2) !

T
. B 1 . B B . B
— (2L + V1 t,) 1‘1’1,1f(»2[+ Urie)  Sua(14+Cr) 7Sy, (2] + Vg, 4,) 7"

1 N _ _ - _
+ f(Z[ F W)  Sua(1+Cr) 1Sy (2] 4+ Wy, ) Wy

1 - .
X T(Z[ F U1 0)  Sea(1+Cr) 7S, (2] + ‘I’T,l,tl,tz)_1> Sta(L+Cr) 'Sy, 252]

= Term2l + Term22 + Term?23 + Term?24 .
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(98)

Note that the different 1 + Cp factors differ from each other slightly, but we will abuse
the notation and treat them as identical. Dealing with them separately requires minor

modifications in the proofs. By direct calculation,

B[S, 1QS50,2|5] = tr(Q¥2,1) (99)
for any @ independent of S;,. Thus,

Term21 = P~ 'b, tr E[(1+ Cr)7'S;, 4

X ((21 F Ur i) (2] + ‘i’T,l,tl,tz)_l) Sua(1+Cr)7'SY, 55k, ]

(100)
= P_lb* tr E[(l + CT)_2S£271QSt272]
= bE[(1+ Cp) 2P tr(QW¥s,q)],
where we have defined
Q = ((Z[ + \ijT,l,tl,tg)_lqjl,l(zI + \ijT,l,tl,tz)_1> Stl,].S)gLQ .
By a modification of Lemmas 2 and 3, we get
P r(QUy,) = P~ tr <(z] + Upgg0) W (2] + \i/m,tl,tg)‘lstl,lsgﬂ%,l)
= P_l tr <S£1’2\I/2’1(ZI + @T,17t17t2)_1\111,1(21 + @T71’t17t2)_15’t1’1> (101)

prob
e

P~ tr [0 50y, ((ZI S 2T R CRICT @T,l,tl,tz)_1>] 7
where, as we explain in the main text, we pass to a subsequence if necessary to ensure the
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limit exists. Thus, by (9),
Term21 — b, (1 + 5(2))_261_15271 :
Proceeding to the next term in (98), we get

Term?22

= P tr E[(1+Cp)~'S;,

(102)

1 A - _ A _
X ( - _(ZI + \DT71,t1,t2)_1St1,1(1 + CT)_l‘S’;l,l(ZI + \PT,l,tl,tz) 1\11171(21 + \IJTJ-,tl,tQ) 1)

T

Stl,l(l + CT)_l‘S;l,ZStz,?]

We have

1 A R
?52171(2’—7 + \IJT,l,tl,t2>_1\111,1(ZI + ‘I’T,l,tl,t2)_15t1,1

1 - 2 _
= St B (2] +Yry0)  Wia(2] + V)"

o~

= &.(2)

is probability by Lemmas 2 and 3 and the Vitali Theorem. Hence,

Term?22

— P tr B[(1+Cp)7'Sy, 4

X ( — (2] + Vg1 400) S (1 + CT)laJ(Z)) (14 Cr)'5,25,, ]

= b (2)(1+ €1 (2)) P tr E[Wo (2] + U7t 400) " S0 St o)

= =b.&1(2) (14 &a(2))Per 6a(2),
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where we have used Lemma 10 to pass to the limit.?” Proceeding to the next term in (98),

we get

Term23 ~ P~'b,E[(1+ Cr)™'S),
A 1 . N
( — (ZI + \I/T,Ltl’tQ)_l\Ifl,l?(Z] —+ \I/TJ’tl’tg)_lStQ,l(l + OT)_ISz:g,l(Z] + \I[T,l,tl,tg)_1>
(106)
Sua(1+Cr) 1S 55, ]

== —b*E[XTYT]

where we have defined
~ 1 ~
Xr=—(14+Cr)7'S, (2] + ‘I’T,l,tl,tg)_qul,lf(d + Ur14,0,)  Stan
and

YT = Pil(l -+ CT)7252172St2’QS£271(ZI + @T,l,tl,tg)ilstl,l .

-~

By Lemma 12 and (9), X7 — (1+&.1(2))"'€(2) in Ly, whereas Y7 has a bounded Ly-norm.

Then, a small modification of Lemma 10 implies that

E[X2Yr] — (14 &.4(2) €(2)E[Yy] — 0

Integrating over S, gives

EYr] = E[P7Y (1 + Cp) 28], 3 Vo (2] + Vg1, 4,) " Sty i

2"Note that it may seem that we need six bounded moments for the signals. But, in fact, the normalization
by 1+ Cp ensures all the necessary terms stay bounded.
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and Lemmas 2 and 3 imply that

ElYr] = i (14 &,1(2)) %621 (2) .-
Thus, Term23 in (98) satisfies.

Term23 — —b,&11(2)(1 4 &11(2)) 3¢; o (). (107)
Finally, the last term in (98) is given by

Term24 = P~ 'b, tr E[(1+ C7)7'S, 4

1 A R
X <T(ZI + \I’T,l,tl,tQ)_ISmJ(l —+ CT)_lsél’l(ZI -+ \I/T,l,tl,tg)_l\lll,l

1 - N
X f<Z] + \I/TJ,tl’tQ)_lStQ’l(l + C’T)_15£2’1(zl + \I/T,l,tl,tg)_l)

X St171(1 + CT)_IS%,QSQQ] (108)

= Pilb* tr E[(l -+ CT)74St272522’1

1 - _ - _
X (T(Z[ +Urist,) 15’151,152171(21 +Urist,) 1‘111,1

1 - .
X ?(Z[ + \I]Tﬂ,tl,tz)ilstz,ls;g,l(ZI + \IITJ,tl,tz)1>
St1715£1,2]
We will need the following

Lemma 13 Consider the block matrix decomposition

Q1,1 Q1,2 1/2 Q11 Qi
= — pl/2 —
“ (Qz;)’ v (Q2’2>’ Q21 Q22
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Then,

E[S;25] 7515 ]

= ‘112,1(2 + Z)‘Ijl,l + (Qz diag((E[X4] - 3)@12Q1)Q2 + tr(Z\I’l,l)\Dz,l)

(109)

for any matriz Z. If Z is uniformly bounded, then the matrices Qo diag(Q12Q1)Q2 have

uniformly bounded trace norms.

Proof of Lemma 13. By linearity, it suffices to prove the formula for a rank-one matrix

A = v'. Then, S = X/¥'/? and we will decompose ¥'/? into (Qy, Qs), so that S = X{Qy.

Then,

E[St,25£,157/5t,15271] = E[Q> XtXt/Q167/Q/1XtX£Q1]
Define 3 = Q18, 7 = Q17. Then, if k; # ko, we have

E[XtXQB/?/XtXﬂkhkz = E[Z Xk1Xllﬁ~l1§/l2Xl2Xk2]
l1,l2
= E[X2 X0 B + Bro ) + Y BB Xy, X3, X7
V4
= Bklﬁ/k? + Bkz:}/kl

At the same time,

E[X, X{BY Xi X[k = B> X7 X0, B9, X0,
ly,l2

= ) BAE[X} X7
V4

- Bklﬁkl(E[Xlgl] _1) + 5,’7
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Summarizing,
E[X.XiB7 X X]) = B3I + 57 + 35 + diag(B(E[X"] - 3))
Thus, by formula (110), we get

E[S{25:187'S11501] = QhQ1(87 +v8") Q1 Q1 +(Q5 diag((E[X '] —3) B, s, ) Q2+ (5'7) Q5 Q1) »

(113)

whereas /7 = f'Q Q1. Now,

Q1:<Q1,1> QQI(Qm) o2 Q11 Qi
Q2,1 ’ Q2,2 ! Qg,l Qm

Thus,

o (@@ @@ fw v -

QlQQl Q/2Q2 qu,l \112,2

and hence we get the required.

Il

Since the kurtosis terms have uniformly bounded trace norms, it is straightforward to
show that their contributions to asymptotic expectations get annihilated by 1/7 and 1/P
factors. Hence, from now on, we will be assuming in our calculations that E[X},] = 3.

Applying Lemma 13, we can integrate over S;,*. Define

1 3 . 1 .
Z = <f<,2] + \I]T,l,tl,tg)71S£1,1St1,1(21 + \IJT,l,tl,tg)illpl,lT(zI + \I/Tyl’tth)l)

28Using the fact that S;, and S;, are independent.
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Then, we can rewrite (108) as
Term24 = P~'b, tr E[(1 + Cr)™*5,,25, 1

1 3 _ - _
X (f(ZI + \IJT,l,tl,tg) 1St17152171(2’[+ \pT,17t17t2) 1\11171

1 A _ - _ 115
X T(ZI_‘_ \DT,l,t1,t2) 15752,15;2,1(21—{_ \I]T,l,tl,tz) 1) ( )

/
Stlvlstl,Q]

= P b tr E[(1+ CT)_4E[St2,282271ZSt2,152271|St1](zI + ‘i’T,Ltl,m)_lStl,lSélg]

Applying Lemma 13, we get
E[St2,25227128t2,1s,;271’Stl] = \112’1(2 + Z/)\Ill,l —+ tr(Z\I/Ll)\I/Q’l)

Substituting this expression into (115), we get that everything reduces to computing two

expectations:?’

Expectationl = P~ tr E[Uy, 20, (2] + \@T,l,tlh)’lSthlS;l’Q] (116)
and
Expectation2 = P~ tr E[Wy tr(ZW, 1) (2] + @T717t1,t2)_15t17152172] (117)

For Expectation2, we have

Ezxpectation2 = P~ tr EVyqtr(ZVy 1) (2] + \i,T,l,tl,t2>7IStlylsél,2] (18)

= Pi1 tr E[Sél,Q\IJQ,l (ZI + \iJT,l,tl,m)ilSthl tr(Z\Ifl’l)] .

29Computing Expectationl with Z’ instead of Z is similar.
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We know that the quantities
1 ! T -1
fstl,g\l/zl(z—f‘i‘ Uriit) Sh
and

1 - _ 2 _ 2 _
ftr ((ZI+ lI]T,l,tl,tg) IStl,lséhl(ZI + \IJT,l,tl,tQ) 1\111,1(’2[ + \IIT,l,tl,tz) 1>

(119)

1 A _ - _ 2 _
= Ttl‘ (S;Ll(zf + \IIT,Ltl,tz) 1\111’1(21 + ‘I]T,17t17t2> 1(2[ + ‘I/T,l,tl,t2> 1515171)

both converge to finite numbers in L, by Lemmas 2 and 3. Thus, when multiplied by P!,
the expectation of the product of these two quantities converges to zero. Thus, Fxpectation2

converges to zero. To compute Ezpectationl, we use

Ezxpectationl = P~ tr EUy 12V, 1 (2] + \TJTJ,tl,tQ)_lSthlS;LQ]

= P_l tr E[St1,282171(21+ \ijTJﬂgl’tz)_l\DLlZ,\pl,Q]

N 120
= P_l tr E[Sth?S;l,l(Z] + \IIT,I,tl,tg)_l‘ljl,l ( )

N 1 A 1 a
X ((ZI + ‘I’T,1,t1,t2)_1‘1’1,1f(2—7 + \I/T,l,tl,tg)_lstl,lsél,l?(Z] + ‘I’T,l,tl,tg)_l) Uy 5]

We can now once again apply Lemma 13 and get

E[S;,?Stlal(Z] + lijT,l,tl,tQ)_l\I/l’l
0’ 1 N
x (el + \I]T’Ltl@)il@l,lf(ZI +Ur100) " S 15 ) (121)

= \11271(2 + Z/)‘Ile + tr(Z\Ijl’1>\Ij2,1
where

. . - . - 1 . -
Z=(zl+Vri44,) 1‘1’1,1(2’[ +Urit,) 1‘1’1,1T(21+ Uriit) ! (122)
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Therefore,

A A A 1 N
Empectationl = P_l tr E[(\PQJ(Z + Z/)\Ile + tr(Z\Ijlyl)‘IJZl) T(Z’[ + \IITJ’tth)_l\IJl’Q]

(123)

First, by Lemma 3 and the Vitali Theorem, tr(Z U, ;) converges to a finite, non-random
number, and hence the second term in this expression converges to zero. Second, the first
term also converges to zero by a similar argument, due to the P~(T)~2 factor. Thus,

Term?24 converges to zero. Gathering the terms, we get

(U, E[6A))

= tr(Ui 1 B[(2] + Ur0) (U288 U + qrdp) (2] + Ur1) ™)

= (U B2 4+ Upy) W (1,) 88 Wr(1,:) (21 + W) ') + &1a(2) + 2614(2)

b p=ip, tr(Wy, E[(2] + ‘ijT,l)_I\ij%l(ZI +07)7Y)

+ Pl tr B[y (2] + U)o Wy (21 + W) 7+ &11(2) + 2604 (2)

- %b*(@b*,l(Q) — 2z¢; €11(2) — 2271611 (2) + €1a(z) + 2804 (2)

+ P o tr B[V, (2] + @T,l)_lilT,Zlq]/TQJ(ZI + 7))

- %b*(¢*71(q) —2z¢7"611(2) — 2271 (2) + (L + b P tr Uan)(&11(2) + 2614 (2))
+ Term?21 + Term22 + T'erm23 + Term?24

— %b*(w*,l(q) —22¢;611(2) = 2271 (2) + (L4 b P e W) (6a(2) + 2€74(2))

b (14 €(2)) 207 o — 2bu(E11(2) + 26 1(2) (1 +&1(2)) ey ' (2)
(124)

The proof of Lemma 11 is complete.
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C Discussion of Related Literature

Formulas of Propositions 2 and 3 have been established in papers on random matrix theory,
with Proposition 2 going back to Ledoit and Péché (2011). Hastie et al. (2019) prove an
analog of Proposition 3 allowing for arbitrary § and expressing all quantities in terms of
the distribution of projections of 8 onto the eigenvectors of ¥ (see also Wu and Xu, 2020).
Furthermore, they establish non-asymptotic bounds on the rate of convegence. However,
both Hastie et al. (2019) and Wu and Xu (2020) require that U is strictly positive definite.
By contrast, in our data analysis, we find that ¥ is close to degenerate. Richards et al.
(2021) also allow for more general 3 structures and ¥ matrices, but require that X, be i.i.d.
Gaussian and Dobriban and Wager (2018) require X; be i.i.d. This is clearly not applicable
to the random Fourier features used in our empirical analysis (or any other non-linear signal
transformations). In contrast to these papers, we establish our results under much weaker
conditions on the distribution of X, across ¢: The Lindenberg condition of Assumption
2. This is important for practical applications, where neither the independence of X; nor

equality (or boundedness) of their higher moments can be guaranteed.

D Additional Exhibits
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Figure 12: Out-of-sample Market Timing Performance With 60-month Training Window

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is 7' = 60 months and predictor count P (or ¢T') ranges from 2 to 12,000

using a range of P. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with v = 2.
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Figure 13: Out-of-sample Market Timing Performance With 120-month Training Window

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is 7' = 120 months and predictor count P (or ¢T') ranges from 2 to 12,000

using a range of P. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with v = 2.



Panel A: R? Panel B: || 3]

I
0.0 k /|
[
[
[
[
| —logyg(z) = -3 0.01 | 1
I —logyp(z) = -2
‘ logyp(z) = —1| |
-0.1 10
| —logy(7) =0
| ——logy(2) = 1
} logyo(2) = 2
\ —logyo(2) =3
——c=1
: : : ‘ 0.00 * —

0 10 20 30 40 50 990 1000 0 10 20 30 40 50 990 1000

c c
Panel C: Expected Return Panel D: Volatility
x10 7
0.02 ]
3.00 |
2.00
0.01 ]
1.00
0.00 ‘ ‘ ‘ ‘ ‘ ‘ 0.00 = =
0 10 20 30 40 50 990 1000 0 10 20 30 40 50 990 1000
c c
Panel E: Information Ratio Panel F: Alpha t-statistic
0.30 |
2.50
0.25 r
2.00
0.20 |
1.50
0.15 r
1.00 r
0.10 - _
0.50 -
0.05 r
000 ¥ | | | J | 0.00 | | | | gL
0 10 20 30 40 50 990 1000 0 10 20 30 40 50 990 1000
(& (&

Figure 14: Out-of-sample Market Timing Performance With Un-standardized Returns

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described
in Section 6.3. Training window is 7' = 12 months and predictor count P (or ¢T') ranges from 2 to 12,000
using a range of P. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with v = 2.

In contrast to our main analysis, returns are not volatility-standardized in this figure.



Panel A: R?

0.0 ;
\
-2.0 ;
\
4.0 —logy(2) =
—logy(2) =
| logyy(2) =
6.0 —logyy(z) = 0
—logy(2) =1
-8.0 |i ——logyp(z) =2
—logjg(z) =3
——c= 1
-10.0 : : ‘
0 10 20 30 40 50 990 1000

c

Panel C: Expected Return

0.06

0.05 |

0.04

0.03

0.02

0.01

0.00 ‘ ‘ ‘ ‘ S L
0 10 20 30 40 50 990
C

1000

Panel E: Information Ratio
0.30

0.25

0.20 §

0.15

0.10

0.05

0.00

50 990

0 10 20 30 40
c

1000

3.00

2.50 |

2.00

1.50

1.00

0.50

0.00

5.00

4.00

3.00

2.00 |

1.00

0.00

250 |

2.00 |

1.50

1.00

0.50

Panel B: || 3]

0 10 20 30 40
c

50 990 1000

Panel D: Volatility

f — |
L =
0 10 20 30 40 50 990 1000
C

Panel F: Alpha t-statistic

50 990

0 10 20 30 40
c

1000

Figure 15: Out-of-sample Market Timing Performance With Bandwidth v =1

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is 7' = 12 months and predictor count P (or ¢T') ranges from 2 to 12,000

using a range of P. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with v = 1.
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Figure 16: Out-of-sample Market Timing Performance With Bandwidth v = 0.5

Note: Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis described

in Section 6.3. Training window is 7' = 12 months and predictor count P (or ¢T') ranges from 2 to 12,000

using a range of P. Predictors are RFFs generated from 15 Welch and Goyal (2008) predictors with v = 0.5.
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